en pl
en pl


Show issue
Year 6/2019 
Issue 31

Strategy and Paradoxes of Borda Count in Formula 1 Racing

Brian Kaiser
University of California

6/2019 (31) Decyzje

DOI 10.7206/DEC.1733-0092.124


Winning a championship is the highest achievement in Formula 1, and multiple titles can earn one a place in the pantheon of the sport. In this article I explore whether the scoring method for selecting a champion can be considered defi nitive, and how unstable results might be when the method’s parameters are slightly changed. I have employed case studies of paradoxes and historical recreations of seasons using alternative scoring systems. Finally, I argue that the Borda count is desirable system for scoring in Formula 1,
and that building strategies by teams around particular scoring systems is a legitimate aspect of the sport.


  1. Aversa, P., Furnari, S., & Haefl iger, S. (2015). Business model confi gurations and performance: A qualitative comparative analysis in Formula One racing, 2005–2013. Industrial and Corporate Change, 24(3), 655–676. [Google Scholar]
  2. Avraham, E. (2015). Destination image repair during crisis: Attracting tourism during the Arab Spring uprisings. Tourism Management, 47, 224–232. [Google Scholar]
  3. Boretti, A. (2010). Improvements of vehicle fuel economy using mechanical regenerative braking. SAE Technical Paper. DOI: https://doi.org/10.4271/2010-01-1683 [Google Scholar]
  4. Budzinski, O., & Müller-Kock, A. (2018). Is the Revenue Allocation Scheme of Formula One Motor Racing a Case for European Competition Policy? Contemporary Economic Policy, 36(1), 215–233. [Google Scholar]
  5. Catchpole, K.R., De Leval, M.R., McEwan, A., Pigott, N., Elliott, M. J., McQuillan, A., … Goldman, A.J. (2007). Patient handover from surgery to intensive care: using Formula 1 pit-stop and aviation models to improve safety and quality. Pediatric Anesthesia, 17(5), 470–478. [Google Scholar]
  6. Chris G. (2017, November). Formula 1 Race Data. Version 1. [Data fi le]. Retrieved on 12/15/2018 from https://www.kaggle.com/cjgdev/formula-1-race-data-19502017 [Google Scholar]
  7. Cobbs, J., Tyler, B.D., Jensen, J.A., & Chan, K. (2017). Prioritizing sponsorship resources in Formula One Racing: A longitudinal analysis. Journal of Sport Management, 31(1), 96–110. [Google Scholar]
  8. FIS Rule Book (2018). FIS: THE INTERNATIONAL SKI COMPETITION RULES (ICR) BOOK III SKI JUMPING. Retrieved on 3/5/2019 from https://assets.fi s-ski.com/image/upload/v1536927329/ fi s-prod/assets/International_Competition_Rules_ICR_Ski_Jumping.pdf. [Google Scholar]
  9. The complete statistics behind our list of 2017’s best footballers. (2017, December 22). The Guardian. Retrieved on 3/5/2019 from https://www.theguardian.com/football/2017/dec/22/the-completestatistics-behind-our-list-of-2017s-best-footballers. [Google Scholar]
  10. Haigh, J. (2009). Uses and limitations of mathematics in sport. IMA Journal of Management Mathematics, 20(2), 97–108. [Google Scholar]
  11. Heckelman, J.C. (2015). 15. Properties and paradoxes of common voting rules. In J.C Heckelman & N.R. Miller (Eds.), Handbook of Social Choice and Voting (pp. 263-283). Cheltenham, UK: Edward Elgar Publishing Limited [Google Scholar]
  12. Heckelman, J.C., & Chen, F.H. (2013). Strategy proof scoring rule lotteries for multiple winners. Journal of Public Economic Theory, 15(1), 103–123. [Google Scholar]
  13. Henderson, J.C., Foo, K., Lim, H., & Yip, S. (2010). Sports events and tourism: The Singapore formula one grand prix. International Journal of Event and Festival Management, 1(1), 60–73. [Google Scholar]
  14. Judde, C., Booth, R., & Brooks, R. (2013). Second place is fi rst of the losers: An analysis of competitive balance in Formula One. Journal of Sports Economics, 14(4), 411–439. [Google Scholar]
  15. Kaminski, M.M. (2012). Jak silna jest polska piłka nożna? Paradoks „gospodarza turnieju” w rankingu FIFA. Decyzje, (17), 29–46. [Google Scholar]
  16. Kaminski, M.M. (2015). 20. Empirical examples of voting paradoxes. In J.C Heckelman & N.R. Miller (Eds.), Handbook of Social Choice and Voting (pp. 367-387). Cheltenham, UK: Edward Elgar Publishing Limited [Google Scholar]
  17. Krauskopf, T., Langen, M., & Bünger, B. (2010). The search for optimal competitive balance in formula one. CAWM discussion paper/Centrum für Angewandte Wirtschaftsforschung Münster. [Google Scholar]
  18. Langen, M., & Krauskopf, T. (2010). The election of a world champion. CAWM discussion paper/ Centrum für Angewandte Wirtschaftsforschung Münster. [Google Scholar]
  19. Mastromarco, C., & Runkel, M. (2009). Rule changes and competitive balance in Formula One motor racing. Applied Economics, 41(23), 3003–3014. [Google Scholar]
  20. Soares de Mello, J.C.C.B., Gomes Junior, S. F., Angulo Meza, L., & Mourão, C.L.d.O. (2015). Condorcet Method with Weakly Rational Decision Makers: A Case Study in the Formula 1 Constructors’ Championship. Procedia Computer Science, 55, 493–502. [Google Scholar]
  21. Soares de Mello, J.C.C.B., Gomes, L.F.A.M., Gomes, E.G., & Soares de Mello, M.H.C. (2005). Use of ordinal multi-criteria methods in the analysis of the Formula 1 World Championship. Cadernos Ebape. BR, 3(2), 01–08. [Google Scholar]
  22. Ordeshook, P.C. (1986). Game theory and political theory: An introduction. Cambridge: Cambridge University Press. [Google Scholar]
  23. Saari, D.G. (1984). The ultimate of chaos resulting from weighted voting systems. Advances in Applied Mathematics, 5(3), 286–308. [Google Scholar]
  24. Schreyer, D., & Torgler, B. (2018). On the role of race outcome uncertainty in the TV demand for Formula 1 Grands Prix. Journal of Sports Economics, 19(2), 211–229. [Google Scholar]
  25. Sitarz, S. (2013). The medal points’ incenter for rankings in sport. Applied Mathematics Letters, 26(4), 408–412. [Google Scholar]
  26. Toma, S. (2016, March 22). F1 Safety - How Technology Allows Drivers to Walk Away from HighSpeed Crashes. autoevolution. Retrieved March 5, 2019 from https://www.autoevolution.com/ news/f1-safety-how-technology-allows-drivers-to-walk-from-high-speed-crashes-105785.html [Google Scholar]
  27. Wright, P.G. (1982). The infl uence of aerodynamics on the design of Formula One racing cars. International Journal of Vehicle Design, 3(4), 383–397. [Google Scholar]
  28. Young, H.P. (1997) Group choice and individual judgments. In D.C. Mueller (Ed.), Perspectives on Public Choice: A Handbook (pp. 181-200). Cambridge, UK: Cambridge University Press. [Google Scholar]

Full metadata record

Cite this record

APA style

Kaiser, Brian (2019). Strategy and Paradoxes of Borda Count in Formula 1 Racing. (2019). Strategy and Paradoxes of Borda Count in Formula 1 Racing. Decyzje, (31), 115-132. https://doi.org/10.7206/DEC.1733-0092.124 (Original work published 6/2019AD)

MLA style

Kaiser, Brian. “Strategy And Paradoxes Of Borda Count In Formula 1 Racing”. 6/2019AD. Decyzje, no. 31, 2019, pp. 115-132.

Chicago style

Kaiser, Brian. “Strategy And Paradoxes Of Borda Count In Formula 1 Racing”. Decyzje, Decyzje, no. 31 (2019): 115-132. doi:10.7206/DEC.1733-0092.124.