Analizowana jest modyfikacja problemu sekwencyjnego wyboru najlepszego obiektu. Selekcjoner obserwuje rangi względne obiektów, których prawdziwe wartości są losowe, niezależne o rozkładzie jednostajnym na [0, 1]. Zadaniem selekcjonera jest wybór jednego obiektu w chwili obserwacji. Otrzymana wypłata to prawdziwa wartość wybranego obiektu pomniejszona o pewien koszt, odzwierciedlający koszt decyzji. Podejście używane do stworzenia modelu matematycznego oraz wyznaczenia strategii optymalnej polega na zastosowaniu metody optymalnego zatrzymania do ciągu wypłat, które są wartościami w innych zadaniach optymalnego zatrzymania. Obserwowane wielkości losowe tworzą łańcuch Markowa, a optymalne strategie wyznaczane są metodą indukcji wstecznej. Zbadano asymptotyczne zachowanie rozwiązań ze skończonym horyzontem czasowym. Przedstawione zagadnienia są dyskusją problemu poruszonego przez Beardena (2006) i analizowanego przez Autora w pracy Szajowskiego (2006).