en pl
en pl

Central European Management Journal

Show issue
Year 2017 
Volume 25 
Issue 2

The Impact of Moderators and Trust on Consumer’s Intention to Use a Mobile Phone for Purchases

Mariusz Trojanowski
University of Warsaw

Jacek Kułak
The Walt Disney Company

2017 25 (2) Central European Management Journal

DOI 10.7206/jmba.ce.2450-7814.197

Abstract

Purpose: This paper examines the consumers’ acceptance and usage of technology, which is an important and widely discussed topic. The aim is to explore the impact of moderators (gender, age, experience in using mobile Internet technologies) and trust towards one’s intention to use a mobile phone for purchases (to acquire goods).

Methodology: Empirical research was conducted among Warsaw students with the use of the UTAUT2 model (Unifed Theory of Acceptance and Use of Technology), extended so as to encompass the concept of trust. Data was analysed using partial least squares path modelling (PLS-SEM) and the SmartPLS 3 programme. The multi-group analysis was employed (PLS-MGA) to measure the impact of moderating variables.

Findings: Research results indicate that trust has no signifcant impact on one’s intention to use a mobile phone for purchases. Gender is an important moderator of the relationship between the independent variable of price value and the independent variable of habit with the dependent variable of the intention to use a mobile phone for purchases. Age is an important moderator in the relationship between the independent variable of hedonic motivation and the independent variable of habit with the dependent variable of the intention to use a mobile phone for purchases. Experience is not an important moderator of any relationship specifed in the hypotheses.

References

  1. Boundless Psychology (2016). Criticisms of the Social-Cognitive Perspectives on Personality, https:// www.boundless.com/psychology/textbooks/boundless-psychology-textbook/personality-16/ social-cognitive-perspectives-on-personality-81/criticisms-of-the-social-cognitive-pespective-on-personality-316-12851/ (21.02.2017). [Google Scholar]
  2. Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50: 179–211, https://doi.org/10.1016/0749-5978(91)90020-T [Google Scholar]
  3. Alazzam, M.B. et al. (2016). Trust in stored data in EHRs acceptance of medical staff: using UTAUT2. International Journal of Applied Engineering Research, 11(4): 2737–2748. [Google Scholar]
  4. Albugami, M. and Bellaaj, M. (2014). The continued use of internet banking – combining UTAUT2 theory and service quality model. Journal of Global Management Research, 10(1): 11–28. [Google Scholar]
  5. An, L., Han, Y. and Tong, L. (2016). Study on the Factors of Online Shopping Intention for Fresh Agricultural Products Based on UTAUT2. Chongqing, Atlantis Press, https://doi.org/10.2991/itoec-16.2016.57 [Google Scholar]
  6. Bagozzi, R.P. (1992). The self regulation of attitudes, intentions, and behavior. Social Psychology Quarterly, 55: 178–204, https://doi.org/10.2307/2786945 [Google Scholar]
  7. Bagozzi, R.P. and Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1): 74–94, https://doi.org/10.1007/BF02723327 [Google Scholar]
  8. Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs: Prentice-Hall Inc. [Google Scholar]
  9. Baptista, G. and Oliveira, T. (2015). Understanding mobile banking: The unifed theory of acceptance and use of technology combined with cultural moderators. Computers in Human Behavior, 50: 418–430, https://doi.org/10.1016/j.chb.2015.04.024 [Google Scholar]
  10. Batorski, D. (2015). Korzystanie z mediów 2015. Diagnoza społeczna 2015. Warunki i jakość życia Polaków, konferencja prasowa PAP, Warszawa. [Google Scholar]
  11. Chae, M. and Kim, J. (2003). What’s so different about the mobile Internet? Communications of the ACM, 46(12): 240–247, https://doi.org/10.1145/953460.953506 [Google Scholar]
  12. Chau, P.Y.K. and Hui, K.L. (1998). Identifying Early Adopters of New IT Products: A Case of Windows 95. Information & Management, 33(5): 225–230, https://doi.org/10.1016/S0378-7206(98)00031-7 [Google Scholar]
  13. Chin, W., Marcolin, B. and Newsted, P. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14: 189–217. https://doi.org/10.1287/isre.14.2.189.16018 [Google Scholar]
  14. Chuttur, M. (2009). Overview of the Technology Acceptance Model: Origins, Developments and Future Directions. Sprouts: Working Papers on Information Systems, 9(37): 1–22. [Google Scholar]
  15. Compeau, D.R. and Higgins, C.A. (1995). Computer self-effcacy: development of a measure and initial test. MIS Quarterly, 19(2): 189–211, https://doi.org/10.2307/249688 [Google Scholar]
  16. Cruz, P., Neto, L., Munoz-Gallego, P. and Laukkanen, T. (2010). Mobile banking rollout in emerging markets: evidence from Brazil. International Journal of Bank Marketing, 28(5): 342–371, https://doi.org/10.1108/02652321011064881 [Google Scholar]
  17. Czapiński, J. and Panek, T. (2015). Diagnoza społeczna 2015. Warunki i jakość życia Polaków. Warszawa: Rada Monitoring Społecznego. [Google Scholar]
  18. Davis, F. (1986). A technology acceptance model for empirically testing new end-user information systems: theory and results. Cambridge: Unpublished Doctoral dissertation, MIT Sloan School of Management. [Google Scholar]
  19. Davis, F.D., Bagozzi, R.P. and Warshaw, P.R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14): 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x [Google Scholar]
  20. Escobar-Rodríguez, T. and Carvajal-Trujillo, E. (2014). Online purchasing tickets for low cost carriers: An application of the unifed theory of acceptance and use of technology (UTAUT) model. Tourism Management, 43: 70–88, https://doi.org/10.1016/j.tourman.2014.01.017 [Google Scholar]
  21. Falk, F.R. and Miller, N.B. (1992). A Primer for Soft Modeling. 1st ed. Akron: The University of Akron. [Google Scholar]
  22. Fishbein, M. (2008). A Reasoned Action Approach to Health Promotion. Medical Decision Making, 28(6): 834–844, https://doi.org/10.1177/0272989X08326092 [Google Scholar]
  23. Fishbein, M. and Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading: Addison-Wesley. [Google Scholar]
  24. Fornell, C. and Larcker, D.F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1): 39–50, https://doi.org/10.2307/3151312 [Google Scholar]
  25. Gaitan-Arenas, J., Peral-Peral, B. and Ramon-Jeronimo, M.A. (2015). Elderly and Internet Banking: An Application of UTAUT2. Journal of Internet Banking and Commerce, 20(1): 1–23. [Google Scholar]
  26. Garson, G. (2016). Partial Least Square: Regression and Structural Equation Models. 1st ed. Asheboro: Statistical Publishing Associates. [Google Scholar]
  27. Gefen, D., Karahanna, E. and Straub, D.W. (2003). Trust and TAM in online shopping. MIS Quarterly, 27(1): 51–90. [Google Scholar]
  28. Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 27: 725–737, https://doi.org/10.1016/S0305-0483(00)00021-9 [Google Scholar]
  29. Hair, J.F., Hult, G.T.M., and Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 1st ed. Thousand Oaks: Sage. [Google Scholar]
  30. Hair, J.F.J., Sarstedt, M.H.L. and Kuppelwieser, V.G. (2014). Partial least squares structural equation modeling (PLS-SEM). An emerging tool in business research. European Business Review, 26(2): 106–121, https://doi.org/10.1108/EBR-10-2013-0128 [Google Scholar]
  31. Hair, J.F., Ringle, C.M. and Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2): 139–151, https://doi.org/10.2753/MTP1069-6679190202 [Google Scholar]
  32. Hair, J.F., Sarstedt, M., Ringle, C.M. and Mena, J.A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40: 414–433, https://doi.org/10.1007/s11747-011-0261-6 [Google Scholar]
  33. Hart, P. and Saunders, C. (1997). Power and Trust: Critical Factors in the Adoption and Use of Electronic Data Interchange. Organization Science, 8(1): 23–42, https://doi.org/10.1287/orsc.8.1.23 [Google Scholar]
  34. Henseler, J., Ringle, C.M. and Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3): 405–431, https://doi.org/10.1108/IMR-09-2014-0304 [Google Scholar]
  35. Henseler, J., Ringle, C. and Sinkovics, R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20: 277–319, https://doi.org/10.1108/S1474-7979(2009)0000020014 [Google Scholar]
  36. Hulland, J. (1999). Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strategic Management Journal, 20(2): 195–204. https://doi.org/10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7 [Google Scholar]
  37. Hu, P.J., Chau, P.Y., Liu Sheng, O.R. and Tam, K.Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, 16(2): 91–112, https://doi.org/10.1080/07421222.1999.11518247 [Google Scholar]
  38. Indrawati and Haryoto, K.S. (2015). The Use of Modifed Theory of Acceptance and Use of Technology 2 to Predict Prospective Users’ Intention in Adopting TV Streaming. Istambuł, ICOCI: 206–215. [Google Scholar]
  39. Indrawati and Marhaeni, G.A.M.M. (2015). Predicting instant messenger application adoption using a Unifed Theory of Acceptance and Use of Technology. Istambuł, International Conference on Computing and Informatics, ICOCI 2015. [Google Scholar]
  40. Jarvenpaa, S.L., Tractinsky, N. and Saarinen, L. (1999). Consumer Trust in an Internet Store: A Cross-Cultural Validation. Journal of Computer-Mediated Communication, 5(2): 1–35, https://doi.org/10.1111/j.1083-6101.1999.tb00337.x [Google Scholar]
  41. Klimontowicz, M. (2014). Rynek płatności mobilnych w Polsce – perspektywy rozwoju. Annales Universitatis Mariae Curie-Skłodowska, 48(3): 137–146, https://doi.org/10.17951/h.2015.48.3.137 [Google Scholar]
  42. Kossecki, P. and Świerczyńska-Kaczor, U. (2011). Trust in social networks. Journal of Management and Business Administration. Central Europe, 19(5): 97–113. [Google Scholar]
  43. Kruger, D. and Byker, D. (2009). Evolved foraging psychology underlies sex differences in shopping experiences and behaviors. Journal of Social, Evolutionary and Cultural Psychology, 3(4): 315–327, https://doi.org/10.1037/h0099312 [Google Scholar]
  44. Labouvie-Vief, G. and Blanchard-Fields, F. (1982). Cognitive ageing and psychological growth. Aging and Society, 2: 183–209. [Google Scholar]
  45. Lustig, C., Konkel, A. and Jacoby, L.L. (2004). Which Route to Recovery? Psychological Science, 15(11): 729–735, https://doi.org/10.1111/j.0956-7976.2004.00749.x [Google Scholar]
  46. Mącik, R. (2013). Technologie informacyjne i komunikacyjne jako moderator procesów podejmowania decyzji zakupowych przez konsumentów. Lublin: Wydawnictwo Uniwersytetu Marii Curie- -Skłodowskiej. [Google Scholar]
  47. McKnight, D.H., Choudhury, V. and Kacmar, C. (2002). The impact of initial consumer trust on intentions to transact with a web site: a trust building model. Journal of Strategic Information Systems, 11: 297–323, https://doi.org/10.1016/S0963-8687(02)00020-3 [Google Scholar]
  48. McKnight, H.D., Choudhury, V. and Kacmar, C. (2002). Developing and Validating Trust Measures for e-Commerce: An Integrative Typology. Information Systems Research, 13(3): 334–359, https://doi.org/10.1287/isre.13.3.334.81 [Google Scholar]
  49. Meyers-Levy, J. and Maheswaran, D. (1991). Exploring Differences in Males’ and Females’ Processing Strategy. Journal of Consumer Research, 18(1): 63–70, https://doi.org/10.1086/209241 [Google Scholar]
  50. mGenerator.pl (2014). Handel mobilny w praktyce 2014. 2 edycja raportu na temat rynku m-commerce w Polsce, UE i USA. [Google Scholar]
  51. Mikowska, M. (2015). Polska jest Mobi, s.l.: Jestem mobi, http://www.tnsglobal.pl/coslychac/fles/2015/05/POLSKA_JEST_MOBI_2015.pdf [Google Scholar]
  52. Moore, G.C. and Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3): 192–222, https://doi.org/10.1287/isre.2.3.192 [Google Scholar]
  53. Murray, K.B. and Haubl, G. (2007). Explaining Cognitive Lock-In: The Role of Skill-Based Habits of Use in Consumer Choice. Journal of Consumer Research, 34(1): 77–88, https://doi.org/10.1086/513048 [Google Scholar]
  54. Pavlou, P.A. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3): 101–134. [Google Scholar]
  55. Ringle, C., Wende, S. and Becker, J.-M. (2015). SmartPLS 3. Hamburg: http://www.smartpls.com. [Google Scholar]
  56. Rogers, E.M. (1983). Diffusion of Innovations. 3rd ed. New York: The Free Press. [Google Scholar]
  57. Rondan-Cataluna, J.F., Arenas-Gaitan, J. and Ramirez-Correa, P.E. (2015). A comparison of different versions of technology acceptance models. A non-linear perspective. Kybernetes, 44(5): 788–805, https://doi.org/10.1108/K-09-2014-0184 [Google Scholar]
  58. Rosen, P. (2005). The Effect of Personal Innovativeness on Technology Acceptance and Use. PhD Dissertation. Oklahoma City: Oklahoma State University. [Google Scholar]
  59. Seock, Y.-K. and Bailey, L.R. (2008). The influence of college students’ shopping orientations and gender differences on online information searches and purchase behaviours. International Journal of Consumer Studies, 32: 113–121, https://doi.org/10.1111/j.1470-6431.2007.00647.x [Google Scholar]
  60. Slade, E.L., Dwivedi, Y.K., Piercy, N.C. and Williams, M.D. (2015). Modeling Consumers’ Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending UTAUT with Innovativeness, Risk,and Trust. Psychology & Marketing, 32(8): 860–873, https://doi.org/10.1002/mar.20823 [Google Scholar]
  61. Slama, M. and Tashchian, A. (1985). Selected Socioeconomic and Demographic Characteristics Associated with Purchasing Involvement. Journal of Marketing, 49(1): 77–82, https://doi.org/10.2307/1251177 [Google Scholar]
  62. Taylor, S. and Todd, P. (1995). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19(4): 561–570, https://doi.org/10.2307/249633 [Google Scholar]
  63. Thompson, R., Higgins, C. and Howell, J. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1): 124–143, https://doi.org/10.2307/249443 [Google Scholar]
  64. Tifferet, S. and Herstein, R. (2012). Gender differences in brand commitment, impulse buying, and hedonic consumption. Journal of Product & Brand Management, 21(3): 176–182, https://doi.org/10.1108/10610421211228793 [Google Scholar]
  65. Triandis, H. (1980). Values, Attitudes, and Interpersonal Behavior. In: Nebraska Symposium on Motivation (1979), Beliefs, Attitudes, and Values. Lincoln: University of Nebraska Press. [Google Scholar]
  66. Trojanowski, M. and Kułak, J. (2016). Wpływ postrzeganego ryzyka na proces korzystania przez konsumentów z mobilnego handlu elektronicznego – rozszerzenie modelu UTAUT2. Warszawa: Uniwersytet Ekonomiczny w Poznaniu. [Google Scholar]
  67. Van Slyke, C., Comunale, C.L. and Belanger, F. (2002). Gender Differences in Perceptions of WebBased Shopping. Communications of the ACM, 45(7): 82–86, https://doi.org/10.1145/545151.545155 [Google Scholar]
  68. Venkatesh, V. and Davis, F.D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2): 186–204, https://doi.org/10.1287/mnsc.46.2.186.11926 [Google Scholar]
  69. Venkatesh, V., Morris, M. and Ackerman, P. (2000). A longitudinal feld investigation of gender differences in individual technology adoption decision-making processes. Organizational Behavior and Human Decision Processes, 83(1): 33–60, https://doi.org/10.1006/obhd.2000.2896 [Google Scholar]
  70. Venkatesh, V., Morris, M.G., Davis, G.B. and Davis, F.D. (2003). User Acceptance of Information Technology: Toward a Unifed View. MIS Quarterly, 27(3): 425–247. [Google Scholar]
  71. Venkatesh, V., Thong, J.Y. and Xu, X. (2012). Consumer acceptance and use of information technology: Extending The Unifed Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1): 157–178. [Google Scholar]
  72. Wong, C.-H., Tan, G. W.-H., Loke, S.-P. and Ooi, K.-B. (2014). Mobile TV: a new form of entertainment? Industrial Management & Data Systems, 114(7): 1050–1067, https://doi.org/10.1108/IMDS-05-2014-0146 [Google Scholar]
  73. Wong, K. K.-K. (2013). Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS. Marketing Bulletin, 24: 1–32. [Google Scholar]
  74. Xu, X. (2014). Understanding Users’ Continued Use of Online Games: An Application of UTAUT2 in Social Network Games. Nicea, MMEDIA: 58–65. [Google Scholar]
  75. Zeithaml, V.A. and Fuerst, W.L. (1983). Age Differences in Response to Grocery Store Price Information. The Journal of Consumer Affairs, 17(2): 402–420, https://doi.org/10.1111/j.1745-6606.1983.tb00311.x [Google Scholar]
  76. Boundless Psychology (2016). Criticisms of the Social-Cognitive Perspectives on Personality, https:// www.boundless.com/psychology/textbooks/boundless-psychology-textbook/personality-16/ social-cognitive-perspectives-on-personality-81/criticisms-of-the-social-cognitive-pespective-on-personality-316-12851/ (21.02.2017). [Google Scholar]
  77. Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50: 179–211, https://doi.org/10.1016/0749-5978(91)90020-T [Google Scholar]
  78. Alazzam, M.B. et al. (2016). Trust in stored data in EHRs acceptance of medical staff: using UTAUT2. International Journal of Applied Engineering Research, 11(4): 2737–2748. [Google Scholar]
  79. Albugami, M. and Bellaaj, M. (2014). The continued use of internet banking – combining UTAUT2 theory and service quality model. Journal of Global Management Research, 10(1): 11–28. [Google Scholar]
  80. An, L., Han, Y. and Tong, L. (2016). Study on the Factors of Online Shopping Intention for Fresh Agricultural Products Based on UTAUT2. Chongqing, Atlantis Press, https://doi.org/10.2991/itoec-16.2016.57 [Google Scholar]
  81. Bagozzi, R.P. (1992). The self regulation of attitudes, intentions, and behavior. Social Psychology Quarterly, 55: 178–204, https://doi.org/10.2307/2786945 [Google Scholar]
  82. Bagozzi, R.P. and Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1): 74–94, https://doi.org/10.1007/BF02723327 [Google Scholar]
  83. Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs: Prentice-Hall Inc. [Google Scholar]
  84. Baptista, G. and Oliveira, T. (2015). Understanding mobile banking: The unifed theory of acceptance and use of technology combined with cultural moderators. Computers in Human Behavior, 50: 418–430, https://doi.org/10.1016/j.chb.2015.04.024 [Google Scholar]
  85. Batorski, D. (2015). Korzystanie z mediów 2015. Diagnoza społeczna 2015. Warunki i jakość życia Polaków, konferencja prasowa PAP, Warszawa. [Google Scholar]
  86. Chae, M. and Kim, J. (2003). What’s so different about the mobile Internet? Communications of the ACM, 46(12): 240–247, https://doi.org/10.1145/953460.953506 [Google Scholar]
  87. Chau, P.Y.K. and Hui, K.L. (1998). Identifying Early Adopters of New IT Products: A Case of Windows 95. Information & Management, 33(5): 225–230, https://doi.org/10.1016/S0378-7206(98)00031-7 [Google Scholar]
  88. Chin, W., Marcolin, B. and Newsted, P. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14: 189–217. https://doi.org/10.1287/isre.14.2.189.16018 [Google Scholar]
  89. Chuttur, M. (2009). Overview of the Technology Acceptance Model: Origins, Developments and Future Directions. Sprouts: Working Papers on Information Systems, 9(37): 1–22. [Google Scholar]
  90. Compeau, D.R. and Higgins, C.A. (1995). Computer self-effcacy: development of a measure and initial test. MIS Quarterly, 19(2): 189–211, https://doi.org/10.2307/249688 [Google Scholar]
  91. Cruz, P., Neto, L., Munoz-Gallego, P. and Laukkanen, T. (2010). Mobile banking rollout in emerging markets: evidence from Brazil. International Journal of Bank Marketing, 28(5): 342–371, https://doi.org/10.1108/02652321011064881 [Google Scholar]
  92. Czapiński, J. and Panek, T. (2015). Diagnoza społeczna 2015. Warunki i jakość życia Polaków. Warszawa: Rada Monitoring Społecznego. [Google Scholar]
  93. Davis, F. (1986). A technology acceptance model for empirically testing new end-user information systems: theory and results. Cambridge: Unpublished Doctoral dissertation, MIT Sloan School of Management. [Google Scholar]
  94. Davis, F.D., Bagozzi, R.P. and Warshaw, P.R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14): 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x [Google Scholar]
  95. Escobar-Rodríguez, T. and Carvajal-Trujillo, E. (2014). Online purchasing tickets for low cost carriers: An application of the unifed theory of acceptance and use of technology (UTAUT) model. Tourism Management, 43: 70–88, https://doi.org/10.1016/j.tourman.2014.01.017 [Google Scholar]
  96. Falk, F.R. and Miller, N.B. (1992). A Primer for Soft Modeling. 1st ed. Akron: The University of Akron. [Google Scholar]
  97. Fishbein, M. (2008). A Reasoned Action Approach to Health Promotion. Medical Decision Making, 28(6): 834–844, https://doi.org/10.1177/0272989X08326092 [Google Scholar]
  98. Fishbein, M. and Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading: Addison-Wesley. [Google Scholar]
  99. Fornell, C. and Larcker, D.F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1): 39–50, https://doi.org/10.2307/3151312 [Google Scholar]
  100. Gaitan-Arenas, J., Peral-Peral, B. and Ramon-Jeronimo, M.A. (2015). Elderly and Internet Banking: An Application of UTAUT2. Journal of Internet Banking and Commerce, 20(1): 1–23. [Google Scholar]
  101. Garson, G. (2016). Partial Least Square: Regression and Structural Equation Models. 1st ed. Asheboro: Statistical Publishing Associates. [Google Scholar]
  102. Gefen, D., Karahanna, E. and Straub, D.W. (2003). Trust and TAM in online shopping. MIS Quarterly, 27(1): 51–90. [Google Scholar]
  103. Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 27: 725–737, https://doi.org/10.1016/S0305-0483(00)00021-9 [Google Scholar]
  104. Hair, J.F., Hult, G.T.M., and Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 1st ed. Thousand Oaks: Sage. [Google Scholar]
  105. Hair, J.F.J., Sarstedt, M.H.L. and Kuppelwieser, V.G. (2014). Partial least squares structural equation modeling (PLS-SEM). An emerging tool in business research. European Business Review, 26(2): 106–121, https://doi.org/10.1108/EBR-10-2013-0128 [Google Scholar]
  106. Hair, J.F., Ringle, C.M. and Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2): 139–151, https://doi.org/10.2753/MTP1069-6679190202 [Google Scholar]
  107. Hair, J.F., Sarstedt, M., Ringle, C.M. and Mena, J.A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40: 414–433, https://doi.org/10.1007/s11747-011-0261-6 [Google Scholar]
  108. Hart, P. and Saunders, C. (1997). Power and Trust: Critical Factors in the Adoption and Use of Electronic Data Interchange. Organization Science, 8(1): 23–42, https://doi.org/10.1287/orsc.8.1.23 [Google Scholar]
  109. Henseler, J., Ringle, C.M. and Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3): 405–431, https://doi.org/10.1108/IMR-09-2014-0304 [Google Scholar]
  110. Henseler, J., Ringle, C. and Sinkovics, R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20: 277–319, https://doi.org/10.1108/S1474-7979(2009)0000020014 [Google Scholar]
  111. Hulland, J. (1999). Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strategic Management Journal, 20(2): 195–204. https://doi.org/10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7 [Google Scholar]
  112. Hu, P.J., Chau, P.Y., Liu Sheng, O.R. and Tam, K.Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, 16(2): 91–112, https://doi.org/10.1080/07421222.1999.11518247 [Google Scholar]
  113. Indrawati and Haryoto, K.S. (2015). The Use of Modifed Theory of Acceptance and Use of Technology 2 to Predict Prospective Users’ Intention in Adopting TV Streaming. Istambuł, ICOCI: 206–215. [Google Scholar]
  114. Indrawati and Marhaeni, G.A.M.M. (2015). Predicting instant messenger application adoption using a Unifed Theory of Acceptance and Use of Technology. Istambuł, International Conference on Computing and Informatics, ICOCI 2015. [Google Scholar]
  115. Jarvenpaa, S.L., Tractinsky, N. and Saarinen, L. (1999). Consumer Trust in an Internet Store: A Cross-Cultural Validation. Journal of Computer-Mediated Communication, 5(2): 1–35, https://doi.org/10.1111/j.1083-6101.1999.tb00337.x [Google Scholar]
  116. Klimontowicz, M. (2014). Rynek płatności mobilnych w Polsce – perspektywy rozwoju. Annales Universitatis Mariae Curie-Skłodowska, 48(3): 137–146, https://doi.org/10.17951/h.2015.48.3.137 [Google Scholar]
  117. Kossecki, P. and Świerczyńska-Kaczor, U. (2011). Trust in social networks. Journal of Management and Business Administration. Central Europe, 19(5): 97–113. [Google Scholar]
  118. Kruger, D. and Byker, D. (2009). Evolved foraging psychology underlies sex differences in shopping experiences and behaviors. Journal of Social, Evolutionary and Cultural Psychology, 3(4): 315–327, https://doi.org/10.1037/h0099312 [Google Scholar]
  119. Labouvie-Vief, G. and Blanchard-Fields, F. (1982). Cognitive ageing and psychological growth. Aging and Society, 2: 183–209. [Google Scholar]
  120. Lustig, C., Konkel, A. and Jacoby, L.L. (2004). Which Route to Recovery? Psychological Science, 15(11): 729–735, https://doi.org/10.1111/j.0956-7976.2004.00749.x [Google Scholar]
  121. Mącik, R. (2013). Technologie informacyjne i komunikacyjne jako moderator procesów podejmowania decyzji zakupowych przez konsumentów. Lublin: Wydawnictwo Uniwersytetu Marii Curie- -Skłodowskiej. [Google Scholar]
  122. McKnight, D.H., Choudhury, V. and Kacmar, C. (2002). The impact of initial consumer trust on intentions to transact with a web site: a trust building model. Journal of Strategic Information Systems, 11: 297–323, https://doi.org/10.1016/S0963-8687(02)00020-3 [Google Scholar]
  123. McKnight, H.D., Choudhury, V. and Kacmar, C. (2002). Developing and Validating Trust Measures for e-Commerce: An Integrative Typology. Information Systems Research, 13(3): 334–359, https://doi.org/10.1287/isre.13.3.334.81 [Google Scholar]
  124. Meyers-Levy, J. and Maheswaran, D. (1991). Exploring Differences in Males’ and Females’ Processing Strategy. Journal of Consumer Research, 18(1): 63–70, https://doi.org/10.1086/209241 [Google Scholar]
  125. mGenerator.pl (2014). Handel mobilny w praktyce 2014. 2 edycja raportu na temat rynku m-commerce w Polsce, UE i USA. [Google Scholar]
  126. Mikowska, M. (2015). Polska jest Mobi, s.l.: Jestem mobi, http://www.tnsglobal.pl/coslychac/fles/2015/05/POLSKA_JEST_MOBI_2015.pdf [Google Scholar]
  127. Moore, G.C. and Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3): 192–222, https://doi.org/10.1287/isre.2.3.192 [Google Scholar]
  128. Murray, K.B. and Haubl, G. (2007). Explaining Cognitive Lock-In: The Role of Skill-Based Habits of Use in Consumer Choice. Journal of Consumer Research, 34(1): 77–88, https://doi.org/10.1086/513048 [Google Scholar]
  129. Pavlou, P.A. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3): 101–134. [Google Scholar]
  130. Ringle, C., Wende, S. and Becker, J.-M. (2015). SmartPLS 3. Hamburg: http://www.smartpls.com. [Google Scholar]
  131. Rogers, E.M. (1983). Diffusion of Innovations. 3rd ed. New York: The Free Press. [Google Scholar]
  132. Rondan-Cataluna, J.F., Arenas-Gaitan, J. and Ramirez-Correa, P.E. (2015). A comparison of different versions of technology acceptance models. A non-linear perspective. Kybernetes, 44(5): 788–805, https://doi.org/10.1108/K-09-2014-0184 [Google Scholar]
  133. Rosen, P. (2005). The Effect of Personal Innovativeness on Technology Acceptance and Use. PhD Dissertation. Oklahoma City: Oklahoma State University. [Google Scholar]
  134. Seock, Y.-K. and Bailey, L.R. (2008). The influence of college students’ shopping orientations and gender differences on online information searches and purchase behaviours. International Journal of Consumer Studies, 32: 113–121, https://doi.org/10.1111/j.1470-6431.2007.00647.x [Google Scholar]
  135. Slade, E.L., Dwivedi, Y.K., Piercy, N.C. and Williams, M.D. (2015). Modeling Consumers’ Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending UTAUT with Innovativeness, Risk,and Trust. Psychology & Marketing, 32(8): 860–873, https://doi.org/10.1002/mar.20823 [Google Scholar]
  136. Slama, M. and Tashchian, A. (1985). Selected Socioeconomic and Demographic Characteristics Associated with Purchasing Involvement. Journal of Marketing, 49(1): 77–82, https://doi.org/10.2307/1251177 [Google Scholar]
  137. Taylor, S. and Todd, P. (1995). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19(4): 561–570, https://doi.org/10.2307/249633 [Google Scholar]
  138. Thompson, R., Higgins, C. and Howell, J. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1): 124–143, https://doi.org/10.2307/249443 [Google Scholar]
  139. Tifferet, S. and Herstein, R. (2012). Gender differences in brand commitment, impulse buying, and hedonic consumption. Journal of Product & Brand Management, 21(3): 176–182, https://doi.org/10.1108/10610421211228793 [Google Scholar]
  140. Triandis, H. (1980). Values, Attitudes, and Interpersonal Behavior. In: Nebraska Symposium on Motivation (1979), Beliefs, Attitudes, and Values. Lincoln: University of Nebraska Press. [Google Scholar]
  141. Trojanowski, M. and Kułak, J. (2016). Wpływ postrzeganego ryzyka na proces korzystania przez konsumentów z mobilnego handlu elektronicznego – rozszerzenie modelu UTAUT2. Warszawa: Uniwersytet Ekonomiczny w Poznaniu. [Google Scholar]
  142. Van Slyke, C., Comunale, C.L. and Belanger, F. (2002). Gender Differences in Perceptions of WebBased Shopping. Communications of the ACM, 45(7): 82–86, https://doi.org/10.1145/545151.545155 [Google Scholar]
  143. Venkatesh, V. and Davis, F.D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2): 186–204, https://doi.org/10.1287/mnsc.46.2.186.11926 [Google Scholar]
  144. Venkatesh, V., Morris, M. and Ackerman, P. (2000). A longitudinal feld investigation of gender differences in individual technology adoption decision-making processes. Organizational Behavior and Human Decision Processes, 83(1): 33–60, https://doi.org/10.1006/obhd.2000.2896 [Google Scholar]
  145. Venkatesh, V., Morris, M.G., Davis, G.B. and Davis, F.D. (2003). User Acceptance of Information Technology: Toward a Unifed View. MIS Quarterly, 27(3): 425–247. [Google Scholar]
  146. Venkatesh, V., Thong, J.Y. and Xu, X. (2012). Consumer acceptance and use of information technology: Extending The Unifed Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1): 157–178. [Google Scholar]
  147. Wong, C.-H., Tan, G. W.-H., Loke, S.-P. and Ooi, K.-B. (2014). Mobile TV: a new form of entertainment? Industrial Management & Data Systems, 114(7): 1050–1067, https://doi.org/10.1108/IMDS-05-2014-0146 [Google Scholar]
  148. Wong, K. K.-K. (2013). Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS. Marketing Bulletin, 24: 1–32. [Google Scholar]
  149. Xu, X. (2014). Understanding Users’ Continued Use of Online Games: An Application of UTAUT2 in Social Network Games. Nicea, MMEDIA: 58–65. [Google Scholar]
  150. Zeithaml, V.A. and Fuerst, W.L. (1983). Age Differences in Response to Grocery Store Price Information. The Journal of Consumer Affairs, 17(2): 402–420, https://doi.org/10.1111/j.1745-6606.1983.tb00311.x [Google Scholar]
  151. Boundless Psychology (2016). Criticisms of the Social-Cognitive Perspectives on Personality, https:// www.boundless.com/psychology/textbooks/boundless-psychology-textbook/personality-16/ social-cognitive-perspectives-on-personality-81/criticisms-of-the-social-cognitive-pespective-on-personality-316-12851/ (21.02.2017). [Google Scholar]
  152. Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50: 179–211, https://doi.org/10.1016/0749-5978(91)90020-T [Google Scholar]
  153. Alazzam, M.B. et al. (2016). Trust in stored data in EHRs acceptance of medical staff: using UTAUT2. International Journal of Applied Engineering Research, 11(4): 2737–2748. [Google Scholar]
  154. Albugami, M. and Bellaaj, M. (2014). The continued use of internet banking – combining UTAUT2 theory and service quality model. Journal of Global Management Research, 10(1): 11–28. [Google Scholar]
  155. An, L., Han, Y. and Tong, L. (2016). Study on the Factors of Online Shopping Intention for Fresh Agricultural Products Based on UTAUT2. Chongqing, Atlantis Press, https://doi.org/10.2991/itoec-16.2016.57 [Google Scholar]
  156. Bagozzi, R.P. (1992). The self regulation of attitudes, intentions, and behavior. Social Psychology Quarterly, 55: 178–204, https://doi.org/10.2307/2786945 [Google Scholar]
  157. Bagozzi, R.P. and Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1): 74–94, https://doi.org/10.1007/BF02723327 [Google Scholar]
  158. Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs: Prentice-Hall Inc. [Google Scholar]
  159. Baptista, G. and Oliveira, T. (2015). Understanding mobile banking: The unifed theory of acceptance and use of technology combined with cultural moderators. Computers in Human Behavior, 50: 418–430, https://doi.org/10.1016/j.chb.2015.04.024 [Google Scholar]
  160. Batorski, D. (2015). Korzystanie z mediów 2015. Diagnoza społeczna 2015. Warunki i jakość życia Polaków, konferencja prasowa PAP, Warszawa. [Google Scholar]
  161. Chae, M. and Kim, J. (2003). What’s so different about the mobile Internet? Communications of the ACM, 46(12): 240–247, https://doi.org/10.1145/953460.953506 [Google Scholar]
  162. Chau, P.Y.K. and Hui, K.L. (1998). Identifying Early Adopters of New IT Products: A Case of Windows 95. Information & Management, 33(5): 225–230, https://doi.org/10.1016/S0378-7206(98)00031-7 [Google Scholar]
  163. Chin, W., Marcolin, B. and Newsted, P. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14: 189–217. https://doi.org/10.1287/isre.14.2.189.16018 [Google Scholar]
  164. Chuttur, M. (2009). Overview of the Technology Acceptance Model: Origins, Developments and Future Directions. Sprouts: Working Papers on Information Systems, 9(37): 1–22. [Google Scholar]
  165. Compeau, D.R. and Higgins, C.A. (1995). Computer self-effcacy: development of a measure and initial test. MIS Quarterly, 19(2): 189–211, https://doi.org/10.2307/249688 [Google Scholar]
  166. Cruz, P., Neto, L., Munoz-Gallego, P. and Laukkanen, T. (2010). Mobile banking rollout in emerging markets: evidence from Brazil. International Journal of Bank Marketing, 28(5): 342–371, https://doi.org/10.1108/02652321011064881 [Google Scholar]
  167. Czapiński, J. and Panek, T. (2015). Diagnoza społeczna 2015. Warunki i jakość życia Polaków. Warszawa: Rada Monitoring Społecznego. [Google Scholar]
  168. Davis, F. (1986). A technology acceptance model for empirically testing new end-user information systems: theory and results. Cambridge: Unpublished Doctoral dissertation, MIT Sloan School of Management. [Google Scholar]
  169. Davis, F.D., Bagozzi, R.P. and Warshaw, P.R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14): 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x [Google Scholar]
  170. Escobar-Rodríguez, T. and Carvajal-Trujillo, E. (2014). Online purchasing tickets for low cost carriers: An application of the unifed theory of acceptance and use of technology (UTAUT) model. Tourism Management, 43: 70–88, https://doi.org/10.1016/j.tourman.2014.01.017 [Google Scholar]
  171. Falk, F.R. and Miller, N.B. (1992). A Primer for Soft Modeling. 1st ed. Akron: The University of Akron. [Google Scholar]
  172. Fishbein, M. (2008). A Reasoned Action Approach to Health Promotion. Medical Decision Making, 28(6): 834–844, https://doi.org/10.1177/0272989X08326092 [Google Scholar]
  173. Fishbein, M. and Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading: Addison-Wesley. [Google Scholar]
  174. Fornell, C. and Larcker, D.F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1): 39–50, https://doi.org/10.2307/3151312 [Google Scholar]
  175. Gaitan-Arenas, J., Peral-Peral, B. and Ramon-Jeronimo, M.A. (2015). Elderly and Internet Banking: An Application of UTAUT2. Journal of Internet Banking and Commerce, 20(1): 1–23. [Google Scholar]
  176. Garson, G. (2016). Partial Least Square: Regression and Structural Equation Models. 1st ed. Asheboro: Statistical Publishing Associates. [Google Scholar]
  177. Gefen, D., Karahanna, E. and Straub, D.W. (2003). Trust and TAM in online shopping. MIS Quarterly, 27(1): 51–90. [Google Scholar]
  178. Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 27: 725–737, https://doi.org/10.1016/S0305-0483(00)00021-9 [Google Scholar]
  179. Hair, J.F., Hult, G.T.M., and Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 1st ed. Thousand Oaks: Sage. [Google Scholar]
  180. Hair, J.F.J., Sarstedt, M.H.L. and Kuppelwieser, V.G. (2014). Partial least squares structural equation modeling (PLS-SEM). An emerging tool in business research. European Business Review, 26(2): 106–121, https://doi.org/10.1108/EBR-10-2013-0128 [Google Scholar]
  181. Hair, J.F., Ringle, C.M. and Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2): 139–151, https://doi.org/10.2753/MTP1069-6679190202 [Google Scholar]
  182. Hair, J.F., Sarstedt, M., Ringle, C.M. and Mena, J.A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40: 414–433, https://doi.org/10.1007/s11747-011-0261-6 [Google Scholar]
  183. Hart, P. and Saunders, C. (1997). Power and Trust: Critical Factors in the Adoption and Use of Electronic Data Interchange. Organization Science, 8(1): 23–42, https://doi.org/10.1287/orsc.8.1.23 [Google Scholar]
  184. Henseler, J., Ringle, C.M. and Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3): 405–431, https://doi.org/10.1108/IMR-09-2014-0304 [Google Scholar]
  185. Henseler, J., Ringle, C. and Sinkovics, R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20: 277–319, https://doi.org/10.1108/S1474-7979(2009)0000020014 [Google Scholar]
  186. Hulland, J. (1999). Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strategic Management Journal, 20(2): 195–204. https://doi.org/10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7 [Google Scholar]
  187. Hu, P.J., Chau, P.Y., Liu Sheng, O.R. and Tam, K.Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, 16(2): 91–112, https://doi.org/10.1080/07421222.1999.11518247 [Google Scholar]
  188. Indrawati and Haryoto, K.S. (2015). The Use of Modifed Theory of Acceptance and Use of Technology 2 to Predict Prospective Users’ Intention in Adopting TV Streaming. Istambuł, ICOCI: 206–215. [Google Scholar]
  189. Indrawati and Marhaeni, G.A.M.M. (2015). Predicting instant messenger application adoption using a Unifed Theory of Acceptance and Use of Technology. Istambuł, International Conference on Computing and Informatics, ICOCI 2015. [Google Scholar]
  190. Jarvenpaa, S.L., Tractinsky, N. and Saarinen, L. (1999). Consumer Trust in an Internet Store: A Cross-Cultural Validation. Journal of Computer-Mediated Communication, 5(2): 1–35, https://doi.org/10.1111/j.1083-6101.1999.tb00337.x [Google Scholar]
  191. Klimontowicz, M. (2014). Rynek płatności mobilnych w Polsce – perspektywy rozwoju. Annales Universitatis Mariae Curie-Skłodowska, 48(3): 137–146, https://doi.org/10.17951/h.2015.48.3.137 [Google Scholar]
  192. Kossecki, P. and Świerczyńska-Kaczor, U. (2011). Trust in social networks. Journal of Management and Business Administration. Central Europe, 19(5): 97–113. [Google Scholar]
  193. Kruger, D. and Byker, D. (2009). Evolved foraging psychology underlies sex differences in shopping experiences and behaviors. Journal of Social, Evolutionary and Cultural Psychology, 3(4): 315–327, https://doi.org/10.1037/h0099312 [Google Scholar]
  194. Labouvie-Vief, G. and Blanchard-Fields, F. (1982). Cognitive ageing and psychological growth. Aging and Society, 2: 183–209. [Google Scholar]
  195. Lustig, C., Konkel, A. and Jacoby, L.L. (2004). Which Route to Recovery? Psychological Science, 15(11): 729–735, https://doi.org/10.1111/j.0956-7976.2004.00749.x [Google Scholar]
  196. Mącik, R. (2013). Technologie informacyjne i komunikacyjne jako moderator procesów podejmowania decyzji zakupowych przez konsumentów. Lublin: Wydawnictwo Uniwersytetu Marii Curie- -Skłodowskiej. [Google Scholar]
  197. McKnight, D.H., Choudhury, V. and Kacmar, C. (2002). The impact of initial consumer trust on intentions to transact with a web site: a trust building model. Journal of Strategic Information Systems, 11: 297–323, https://doi.org/10.1016/S0963-8687(02)00020-3 [Google Scholar]
  198. McKnight, H.D., Choudhury, V. and Kacmar, C. (2002). Developing and Validating Trust Measures for e-Commerce: An Integrative Typology. Information Systems Research, 13(3): 334–359, https://doi.org/10.1287/isre.13.3.334.81 [Google Scholar]
  199. Meyers-Levy, J. and Maheswaran, D. (1991). Exploring Differences in Males’ and Females’ Processing Strategy. Journal of Consumer Research, 18(1): 63–70, https://doi.org/10.1086/209241 [Google Scholar]
  200. mGenerator.pl (2014). Handel mobilny w praktyce 2014. 2 edycja raportu na temat rynku m-commerce w Polsce, UE i USA. [Google Scholar]
  201. Mikowska, M. (2015). Polska jest Mobi, s.l.: Jestem mobi, http://www.tnsglobal.pl/coslychac/fles/2015/05/POLSKA_JEST_MOBI_2015.pdf [Google Scholar]
  202. Moore, G.C. and Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3): 192–222, https://doi.org/10.1287/isre.2.3.192 [Google Scholar]
  203. Murray, K.B. and Haubl, G. (2007). Explaining Cognitive Lock-In: The Role of Skill-Based Habits of Use in Consumer Choice. Journal of Consumer Research, 34(1): 77–88, https://doi.org/10.1086/513048 [Google Scholar]
  204. Pavlou, P.A. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3): 101–134. [Google Scholar]
  205. Ringle, C., Wende, S. and Becker, J.-M. (2015). SmartPLS 3. Hamburg: http://www.smartpls.com. [Google Scholar]
  206. Rogers, E.M. (1983). Diffusion of Innovations. 3rd ed. New York: The Free Press. [Google Scholar]
  207. Rondan-Cataluna, J.F., Arenas-Gaitan, J. and Ramirez-Correa, P.E. (2015). A comparison of different versions of technology acceptance models. A non-linear perspective. Kybernetes, 44(5): 788–805, https://doi.org/10.1108/K-09-2014-0184 [Google Scholar]
  208. Rosen, P. (2005). The Effect of Personal Innovativeness on Technology Acceptance and Use. PhD Dissertation. Oklahoma City: Oklahoma State University. [Google Scholar]
  209. Seock, Y.-K. and Bailey, L.R. (2008). The influence of college students’ shopping orientations and gender differences on online information searches and purchase behaviours. International Journal of Consumer Studies, 32: 113–121, https://doi.org/10.1111/j.1470-6431.2007.00647.x [Google Scholar]
  210. Slade, E.L., Dwivedi, Y.K., Piercy, N.C. and Williams, M.D. (2015). Modeling Consumers’ Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending UTAUT with Innovativeness, Risk,and Trust. Psychology & Marketing, 32(8): 860–873, https://doi.org/10.1002/mar.20823 [Google Scholar]
  211. Slama, M. and Tashchian, A. (1985). Selected Socioeconomic and Demographic Characteristics Associated with Purchasing Involvement. Journal of Marketing, 49(1): 77–82, https://doi.org/10.2307/1251177 [Google Scholar]
  212. Taylor, S. and Todd, P. (1995). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19(4): 561–570, https://doi.org/10.2307/249633 [Google Scholar]
  213. Thompson, R., Higgins, C. and Howell, J. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1): 124–143, https://doi.org/10.2307/249443 [Google Scholar]
  214. Tifferet, S. and Herstein, R. (2012). Gender differences in brand commitment, impulse buying, and hedonic consumption. Journal of Product & Brand Management, 21(3): 176–182, https://doi.org/10.1108/10610421211228793 [Google Scholar]
  215. Triandis, H. (1980). Values, Attitudes, and Interpersonal Behavior. In: Nebraska Symposium on Motivation (1979), Beliefs, Attitudes, and Values. Lincoln: University of Nebraska Press. [Google Scholar]
  216. Trojanowski, M. and Kułak, J. (2016). Wpływ postrzeganego ryzyka na proces korzystania przez konsumentów z mobilnego handlu elektronicznego – rozszerzenie modelu UTAUT2. Warszawa: Uniwersytet Ekonomiczny w Poznaniu. [Google Scholar]
  217. Van Slyke, C., Comunale, C.L. and Belanger, F. (2002). Gender Differences in Perceptions of WebBased Shopping. Communications of the ACM, 45(7): 82–86, https://doi.org/10.1145/545151.545155 [Google Scholar]
  218. Venkatesh, V. and Davis, F.D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2): 186–204, https://doi.org/10.1287/mnsc.46.2.186.11926 [Google Scholar]
  219. Venkatesh, V., Morris, M. and Ackerman, P. (2000). A longitudinal feld investigation of gender differences in individual technology adoption decision-making processes. Organizational Behavior and Human Decision Processes, 83(1): 33–60, https://doi.org/10.1006/obhd.2000.2896 [Google Scholar]
  220. Venkatesh, V., Morris, M.G., Davis, G.B. and Davis, F.D. (2003). User Acceptance of Information Technology: Toward a Unifed View. MIS Quarterly, 27(3): 425–247. [Google Scholar]
  221. Venkatesh, V., Thong, J.Y. and Xu, X. (2012). Consumer acceptance and use of information technology: Extending The Unifed Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1): 157–178. [Google Scholar]
  222. Wong, C.-H., Tan, G. W.-H., Loke, S.-P. and Ooi, K.-B. (2014). Mobile TV: a new form of entertainment? Industrial Management & Data Systems, 114(7): 1050–1067, https://doi.org/10.1108/IMDS-05-2014-0146 [Google Scholar]
  223. Wong, K. K.-K. (2013). Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS. Marketing Bulletin, 24: 1–32. [Google Scholar]
  224. Xu, X. (2014). Understanding Users’ Continued Use of Online Games: An Application of UTAUT2 in Social Network Games. Nicea, MMEDIA: 58–65. [Google Scholar]
  225. Zeithaml, V.A. and Fuerst, W.L. (1983). Age Differences in Response to Grocery Store Price Information. The Journal of Consumer Affairs, 17(2): 402–420, https://doi.org/10.1111/j.1745-6606.1983.tb00311.x [Google Scholar]
  226. Boundless Psychology (2016). Criticisms of the Social-Cognitive Perspectives on Personality, https:// www.boundless.com/psychology/textbooks/boundless-psychology-textbook/personality-16/ social-cognitive-perspectives-on-personality-81/criticisms-of-the-social-cognitive-pespective-on-personality-316-12851/ (21.02.2017). [Google Scholar]
  227. Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50: 179–211, https://doi.org/10.1016/0749-5978(91)90020-T [Google Scholar]
  228. Alazzam, M.B. et al. (2016). Trust in stored data in EHRs acceptance of medical staff: using UTAUT2. International Journal of Applied Engineering Research, 11(4): 2737–2748. [Google Scholar]
  229. Albugami, M. and Bellaaj, M. (2014). The continued use of internet banking – combining UTAUT2 theory and service quality model. Journal of Global Management Research, 10(1): 11–28. [Google Scholar]
  230. An, L., Han, Y. and Tong, L. (2016). Study on the Factors of Online Shopping Intention for Fresh Agricultural Products Based on UTAUT2. Chongqing, Atlantis Press, https://doi.org/10.2991/itoec-16.2016.57 [Google Scholar]
  231. Bagozzi, R.P. (1992). The self regulation of attitudes, intentions, and behavior. Social Psychology Quarterly, 55: 178–204, https://doi.org/10.2307/2786945 [Google Scholar]
  232. Bagozzi, R.P. and Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1): 74–94, https://doi.org/10.1007/BF02723327 [Google Scholar]
  233. Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs: Prentice-Hall Inc. [Google Scholar]
  234. Baptista, G. and Oliveira, T. (2015). Understanding mobile banking: The unifed theory of acceptance and use of technology combined with cultural moderators. Computers in Human Behavior, 50: 418–430, https://doi.org/10.1016/j.chb.2015.04.024 [Google Scholar]
  235. Batorski, D. (2015). Korzystanie z mediów 2015. Diagnoza społeczna 2015. Warunki i jakość życia Polaków, konferencja prasowa PAP, Warszawa. [Google Scholar]
  236. Chae, M. and Kim, J. (2003). What’s so different about the mobile Internet? Communications of the ACM, 46(12): 240–247, https://doi.org/10.1145/953460.953506 [Google Scholar]
  237. Chau, P.Y.K. and Hui, K.L. (1998). Identifying Early Adopters of New IT Products: A Case of Windows 95. Information & Management, 33(5): 225–230, https://doi.org/10.1016/S0378-7206(98)00031-7 [Google Scholar]
  238. Chin, W., Marcolin, B. and Newsted, P. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14: 189–217. https://doi.org/10.1287/isre.14.2.189.16018 [Google Scholar]
  239. Chuttur, M. (2009). Overview of the Technology Acceptance Model: Origins, Developments and Future Directions. Sprouts: Working Papers on Information Systems, 9(37): 1–22. [Google Scholar]
  240. Compeau, D.R. and Higgins, C.A. (1995). Computer self-effcacy: development of a measure and initial test. MIS Quarterly, 19(2): 189–211, https://doi.org/10.2307/249688 [Google Scholar]
  241. Cruz, P., Neto, L., Munoz-Gallego, P. and Laukkanen, T. (2010). Mobile banking rollout in emerging markets: evidence from Brazil. International Journal of Bank Marketing, 28(5): 342–371, https://doi.org/10.1108/02652321011064881 [Google Scholar]
  242. Czapiński, J. and Panek, T. (2015). Diagnoza społeczna 2015. Warunki i jakość życia Polaków. Warszawa: Rada Monitoring Społecznego. [Google Scholar]
  243. Davis, F. (1986). A technology acceptance model for empirically testing new end-user information systems: theory and results. Cambridge: Unpublished Doctoral dissertation, MIT Sloan School of Management. [Google Scholar]
  244. Davis, F.D., Bagozzi, R.P. and Warshaw, P.R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14): 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x [Google Scholar]
  245. Escobar-Rodríguez, T. and Carvajal-Trujillo, E. (2014). Online purchasing tickets for low cost carriers: An application of the unifed theory of acceptance and use of technology (UTAUT) model. Tourism Management, 43: 70–88, https://doi.org/10.1016/j.tourman.2014.01.017 [Google Scholar]
  246. Falk, F.R. and Miller, N.B. (1992). A Primer for Soft Modeling. 1st ed. Akron: The University of Akron. [Google Scholar]
  247. Fishbein, M. (2008). A Reasoned Action Approach to Health Promotion. Medical Decision Making, 28(6): 834–844, https://doi.org/10.1177/0272989X08326092 [Google Scholar]
  248. Fishbein, M. and Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading: Addison-Wesley. [Google Scholar]
  249. Fornell, C. and Larcker, D.F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1): 39–50, https://doi.org/10.2307/3151312 [Google Scholar]
  250. Gaitan-Arenas, J., Peral-Peral, B. and Ramon-Jeronimo, M.A. (2015). Elderly and Internet Banking: An Application of UTAUT2. Journal of Internet Banking and Commerce, 20(1): 1–23. [Google Scholar]
  251. Garson, G. (2016). Partial Least Square: Regression and Structural Equation Models. 1st ed. Asheboro: Statistical Publishing Associates. [Google Scholar]
  252. Gefen, D., Karahanna, E. and Straub, D.W. (2003). Trust and TAM in online shopping. MIS Quarterly, 27(1): 51–90. [Google Scholar]
  253. Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 27: 725–737, https://doi.org/10.1016/S0305-0483(00)00021-9 [Google Scholar]
  254. Hair, J.F., Hult, G.T.M., and Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 1st ed. Thousand Oaks: Sage. [Google Scholar]
  255. Hair, J.F.J., Sarstedt, M.H.L. and Kuppelwieser, V.G. (2014). Partial least squares structural equation modeling (PLS-SEM). An emerging tool in business research. European Business Review, 26(2): 106–121, https://doi.org/10.1108/EBR-10-2013-0128 [Google Scholar]
  256. Hair, J.F., Ringle, C.M. and Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2): 139–151, https://doi.org/10.2753/MTP1069-6679190202 [Google Scholar]
  257. Hair, J.F., Sarstedt, M., Ringle, C.M. and Mena, J.A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40: 414–433, https://doi.org/10.1007/s11747-011-0261-6 [Google Scholar]
  258. Hart, P. and Saunders, C. (1997). Power and Trust: Critical Factors in the Adoption and Use of Electronic Data Interchange. Organization Science, 8(1): 23–42, https://doi.org/10.1287/orsc.8.1.23 [Google Scholar]
  259. Henseler, J., Ringle, C.M. and Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3): 405–431, https://doi.org/10.1108/IMR-09-2014-0304 [Google Scholar]
  260. Henseler, J., Ringle, C. and Sinkovics, R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20: 277–319, https://doi.org/10.1108/S1474-7979(2009)0000020014 [Google Scholar]
  261. Hulland, J. (1999). Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strategic Management Journal, 20(2): 195–204. https://doi.org/10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7 [Google Scholar]
  262. Hu, P.J., Chau, P.Y., Liu Sheng, O.R. and Tam, K.Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, 16(2): 91–112, https://doi.org/10.1080/07421222.1999.11518247 [Google Scholar]
  263. Indrawati and Haryoto, K.S. (2015). The Use of Modifed Theory of Acceptance and Use of Technology 2 to Predict Prospective Users’ Intention in Adopting TV Streaming. Istambuł, ICOCI: 206–215. [Google Scholar]
  264. Indrawati and Marhaeni, G.A.M.M. (2015). Predicting instant messenger application adoption using a Unifed Theory of Acceptance and Use of Technology. Istambuł, International Conference on Computing and Informatics, ICOCI 2015. [Google Scholar]
  265. Jarvenpaa, S.L., Tractinsky, N. and Saarinen, L. (1999). Consumer Trust in an Internet Store: A Cross-Cultural Validation. Journal of Computer-Mediated Communication, 5(2): 1–35, https://doi.org/10.1111/j.1083-6101.1999.tb00337.x [Google Scholar]
  266. Klimontowicz, M. (2014). Rynek płatności mobilnych w Polsce – perspektywy rozwoju. Annales Universitatis Mariae Curie-Skłodowska, 48(3): 137–146, https://doi.org/10.17951/h.2015.48.3.137 [Google Scholar]
  267. Kossecki, P. and Świerczyńska-Kaczor, U. (2011). Trust in social networks. Journal of Management and Business Administration. Central Europe, 19(5): 97–113. [Google Scholar]
  268. Kruger, D. and Byker, D. (2009). Evolved foraging psychology underlies sex differences in shopping experiences and behaviors. Journal of Social, Evolutionary and Cultural Psychology, 3(4): 315–327, https://doi.org/10.1037/h0099312 [Google Scholar]
  269. Labouvie-Vief, G. and Blanchard-Fields, F. (1982). Cognitive ageing and psychological growth. Aging and Society, 2: 183–209. [Google Scholar]
  270. Lustig, C., Konkel, A. and Jacoby, L.L. (2004). Which Route to Recovery? Psychological Science, 15(11): 729–735, https://doi.org/10.1111/j.0956-7976.2004.00749.x [Google Scholar]
  271. Mącik, R. (2013). Technologie informacyjne i komunikacyjne jako moderator procesów podejmowania decyzji zakupowych przez konsumentów. Lublin: Wydawnictwo Uniwersytetu Marii Curie- -Skłodowskiej. [Google Scholar]
  272. McKnight, D.H., Choudhury, V. and Kacmar, C. (2002). The impact of initial consumer trust on intentions to transact with a web site: a trust building model. Journal of Strategic Information Systems, 11: 297–323, https://doi.org/10.1016/S0963-8687(02)00020-3 [Google Scholar]
  273. McKnight, H.D., Choudhury, V. and Kacmar, C. (2002). Developing and Validating Trust Measures for e-Commerce: An Integrative Typology. Information Systems Research, 13(3): 334–359, https://doi.org/10.1287/isre.13.3.334.81 [Google Scholar]
  274. Meyers-Levy, J. and Maheswaran, D. (1991). Exploring Differences in Males’ and Females’ Processing Strategy. Journal of Consumer Research, 18(1): 63–70, https://doi.org/10.1086/209241 [Google Scholar]
  275. mGenerator.pl (2014). Handel mobilny w praktyce 2014. 2 edycja raportu na temat rynku m-commerce w Polsce, UE i USA. [Google Scholar]
  276. Mikowska, M. (2015). Polska jest Mobi, s.l.: Jestem mobi, http://www.tnsglobal.pl/coslychac/fles/2015/05/POLSKA_JEST_MOBI_2015.pdf [Google Scholar]
  277. Moore, G.C. and Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3): 192–222, https://doi.org/10.1287/isre.2.3.192 [Google Scholar]
  278. Murray, K.B. and Haubl, G. (2007). Explaining Cognitive Lock-In: The Role of Skill-Based Habits of Use in Consumer Choice. Journal of Consumer Research, 34(1): 77–88, https://doi.org/10.1086/513048 [Google Scholar]
  279. Pavlou, P.A. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3): 101–134. [Google Scholar]
  280. Ringle, C., Wende, S. and Becker, J.-M. (2015). SmartPLS 3. Hamburg: http://www.smartpls.com. [Google Scholar]
  281. Rogers, E.M. (1983). Diffusion of Innovations. 3rd ed. New York: The Free Press. [Google Scholar]
  282. Rondan-Cataluna, J.F., Arenas-Gaitan, J. and Ramirez-Correa, P.E. (2015). A comparison of different versions of technology acceptance models. A non-linear perspective. Kybernetes, 44(5): 788–805, https://doi.org/10.1108/K-09-2014-0184 [Google Scholar]
  283. Rosen, P. (2005). The Effect of Personal Innovativeness on Technology Acceptance and Use. PhD Dissertation. Oklahoma City: Oklahoma State University. [Google Scholar]
  284. Seock, Y.-K. and Bailey, L.R. (2008). The influence of college students’ shopping orientations and gender differences on online information searches and purchase behaviours. International Journal of Consumer Studies, 32: 113–121, https://doi.org/10.1111/j.1470-6431.2007.00647.x [Google Scholar]
  285. Slade, E.L., Dwivedi, Y.K., Piercy, N.C. and Williams, M.D. (2015). Modeling Consumers’ Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending UTAUT with Innovativeness, Risk,and Trust. Psychology & Marketing, 32(8): 860–873, https://doi.org/10.1002/mar.20823 [Google Scholar]
  286. Slama, M. and Tashchian, A. (1985). Selected Socioeconomic and Demographic Characteristics Associated with Purchasing Involvement. Journal of Marketing, 49(1): 77–82, https://doi.org/10.2307/1251177 [Google Scholar]
  287. Taylor, S. and Todd, P. (1995). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19(4): 561–570, https://doi.org/10.2307/249633 [Google Scholar]
  288. Thompson, R., Higgins, C. and Howell, J. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1): 124–143, https://doi.org/10.2307/249443 [Google Scholar]
  289. Tifferet, S. and Herstein, R. (2012). Gender differences in brand commitment, impulse buying, and hedonic consumption. Journal of Product & Brand Management, 21(3): 176–182, https://doi.org/10.1108/10610421211228793 [Google Scholar]
  290. Triandis, H. (1980). Values, Attitudes, and Interpersonal Behavior. In: Nebraska Symposium on Motivation (1979), Beliefs, Attitudes, and Values. Lincoln: University of Nebraska Press. [Google Scholar]
  291. Trojanowski, M. and Kułak, J. (2016). Wpływ postrzeganego ryzyka na proces korzystania przez konsumentów z mobilnego handlu elektronicznego – rozszerzenie modelu UTAUT2. Warszawa: Uniwersytet Ekonomiczny w Poznaniu. [Google Scholar]
  292. Van Slyke, C., Comunale, C.L. and Belanger, F. (2002). Gender Differences in Perceptions of WebBased Shopping. Communications of the ACM, 45(7): 82–86, https://doi.org/10.1145/545151.545155 [Google Scholar]
  293. Venkatesh, V. and Davis, F.D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2): 186–204, https://doi.org/10.1287/mnsc.46.2.186.11926 [Google Scholar]
  294. Venkatesh, V., Morris, M. and Ackerman, P. (2000). A longitudinal feld investigation of gender differences in individual technology adoption decision-making processes. Organizational Behavior and Human Decision Processes, 83(1): 33–60, https://doi.org/10.1006/obhd.2000.2896 [Google Scholar]
  295. Venkatesh, V., Morris, M.G., Davis, G.B. and Davis, F.D. (2003). User Acceptance of Information Technology: Toward a Unifed View. MIS Quarterly, 27(3): 425–247. [Google Scholar]
  296. Venkatesh, V., Thong, J.Y. and Xu, X. (2012). Consumer acceptance and use of information technology: Extending The Unifed Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1): 157–178. [Google Scholar]
  297. Wong, C.-H., Tan, G. W.-H., Loke, S.-P. and Ooi, K.-B. (2014). Mobile TV: a new form of entertainment? Industrial Management & Data Systems, 114(7): 1050–1067, https://doi.org/10.1108/IMDS-05-2014-0146 [Google Scholar]
  298. Wong, K. K.-K. (2013). Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS. Marketing Bulletin, 24: 1–32. [Google Scholar]
  299. Xu, X. (2014). Understanding Users’ Continued Use of Online Games: An Application of UTAUT2 in Social Network Games. Nicea, MMEDIA: 58–65. [Google Scholar]
  300. Zeithaml, V.A. and Fuerst, W.L. (1983). Age Differences in Response to Grocery Store Price Information. The Journal of Consumer Affairs, 17(2): 402–420, https://doi.org/10.1111/j.1745-6606.1983.tb00311.x [Google Scholar]
  301. Boundless Psychology (2016). Criticisms of the Social-Cognitive Perspectives on Personality, https:// www.boundless.com/psychology/textbooks/boundless-psychology-textbook/personality-16/ social-cognitive-perspectives-on-personality-81/criticisms-of-the-social-cognitive-pespective-on-personality-316-12851/ (21.02.2017). [Google Scholar]
  302. Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50: 179–211, https://doi.org/10.1016/0749-5978(91)90020-T [Google Scholar]
  303. Alazzam, M.B. et al. (2016). Trust in stored data in EHRs acceptance of medical staff: using UTAUT2. International Journal of Applied Engineering Research, 11(4): 2737–2748. [Google Scholar]
  304. Albugami, M. and Bellaaj, M. (2014). The continued use of internet banking – combining UTAUT2 theory and service quality model. Journal of Global Management Research, 10(1): 11–28. [Google Scholar]
  305. An, L., Han, Y. and Tong, L. (2016). Study on the Factors of Online Shopping Intention for Fresh Agricultural Products Based on UTAUT2. Chongqing, Atlantis Press, https://doi.org/10.2991/itoec-16.2016.57 [Google Scholar]
  306. Bagozzi, R.P. (1992). The self regulation of attitudes, intentions, and behavior. Social Psychology Quarterly, 55: 178–204, https://doi.org/10.2307/2786945 [Google Scholar]
  307. Bagozzi, R.P. and Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1): 74–94, https://doi.org/10.1007/BF02723327 [Google Scholar]
  308. Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs: Prentice-Hall Inc. [Google Scholar]
  309. Baptista, G. and Oliveira, T. (2015). Understanding mobile banking: The unifed theory of acceptance and use of technology combined with cultural moderators. Computers in Human Behavior, 50: 418–430, https://doi.org/10.1016/j.chb.2015.04.024 [Google Scholar]
  310. Batorski, D. (2015). Korzystanie z mediów 2015. Diagnoza społeczna 2015. Warunki i jakość życia Polaków, konferencja prasowa PAP, Warszawa. [Google Scholar]
  311. Chae, M. and Kim, J. (2003). What’s so different about the mobile Internet? Communications of the ACM, 46(12): 240–247, https://doi.org/10.1145/953460.953506 [Google Scholar]
  312. Chau, P.Y.K. and Hui, K.L. (1998). Identifying Early Adopters of New IT Products: A Case of Windows 95. Information & Management, 33(5): 225–230, https://doi.org/10.1016/S0378-7206(98)00031-7 [Google Scholar]
  313. Chin, W., Marcolin, B. and Newsted, P. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14: 189–217. https://doi.org/10.1287/isre.14.2.189.16018 [Google Scholar]
  314. Chuttur, M. (2009). Overview of the Technology Acceptance Model: Origins, Developments and Future Directions. Sprouts: Working Papers on Information Systems, 9(37): 1–22. [Google Scholar]
  315. Compeau, D.R. and Higgins, C.A. (1995). Computer self-effcacy: development of a measure and initial test. MIS Quarterly, 19(2): 189–211, https://doi.org/10.2307/249688 [Google Scholar]
  316. Cruz, P., Neto, L., Munoz-Gallego, P. and Laukkanen, T. (2010). Mobile banking rollout in emerging markets: evidence from Brazil. International Journal of Bank Marketing, 28(5): 342–371, https://doi.org/10.1108/02652321011064881 [Google Scholar]
  317. Czapiński, J. and Panek, T. (2015). Diagnoza społeczna 2015. Warunki i jakość życia Polaków. Warszawa: Rada Monitoring Społecznego. [Google Scholar]
  318. Davis, F. (1986). A technology acceptance model for empirically testing new end-user information systems: theory and results. Cambridge: Unpublished Doctoral dissertation, MIT Sloan School of Management. [Google Scholar]
  319. Davis, F.D., Bagozzi, R.P. and Warshaw, P.R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14): 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x [Google Scholar]
  320. Escobar-Rodríguez, T. and Carvajal-Trujillo, E. (2014). Online purchasing tickets for low cost carriers: An application of the unifed theory of acceptance and use of technology (UTAUT) model. Tourism Management, 43: 70–88, https://doi.org/10.1016/j.tourman.2014.01.017 [Google Scholar]
  321. Falk, F.R. and Miller, N.B. (1992). A Primer for Soft Modeling. 1st ed. Akron: The University of Akron. [Google Scholar]
  322. Fishbein, M. (2008). A Reasoned Action Approach to Health Promotion. Medical Decision Making, 28(6): 834–844, https://doi.org/10.1177/0272989X08326092 [Google Scholar]
  323. Fishbein, M. and Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading: Addison-Wesley. [Google Scholar]
  324. Fornell, C. and Larcker, D.F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1): 39–50, https://doi.org/10.2307/3151312 [Google Scholar]
  325. Gaitan-Arenas, J., Peral-Peral, B. and Ramon-Jeronimo, M.A. (2015). Elderly and Internet Banking: An Application of UTAUT2. Journal of Internet Banking and Commerce, 20(1): 1–23. [Google Scholar]
  326. Garson, G. (2016). Partial Least Square: Regression and Structural Equation Models. 1st ed. Asheboro: Statistical Publishing Associates. [Google Scholar]
  327. Gefen, D., Karahanna, E. and Straub, D.W. (2003). Trust and TAM in online shopping. MIS Quarterly, 27(1): 51–90. [Google Scholar]
  328. Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 27: 725–737, https://doi.org/10.1016/S0305-0483(00)00021-9 [Google Scholar]
  329. Hair, J.F., Hult, G.T.M., and Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 1st ed. Thousand Oaks: Sage. [Google Scholar]
  330. Hair, J.F.J., Sarstedt, M.H.L. and Kuppelwieser, V.G. (2014). Partial least squares structural equation modeling (PLS-SEM). An emerging tool in business research. European Business Review, 26(2): 106–121, https://doi.org/10.1108/EBR-10-2013-0128 [Google Scholar]
  331. Hair, J.F., Ringle, C.M. and Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2): 139–151, https://doi.org/10.2753/MTP1069-6679190202 [Google Scholar]
  332. Hair, J.F., Sarstedt, M., Ringle, C.M. and Mena, J.A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40: 414–433, https://doi.org/10.1007/s11747-011-0261-6 [Google Scholar]
  333. Hart, P. and Saunders, C. (1997). Power and Trust: Critical Factors in the Adoption and Use of Electronic Data Interchange. Organization Science, 8(1): 23–42, https://doi.org/10.1287/orsc.8.1.23 [Google Scholar]
  334. Henseler, J., Ringle, C.M. and Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3): 405–431, https://doi.org/10.1108/IMR-09-2014-0304 [Google Scholar]
  335. Henseler, J., Ringle, C. and Sinkovics, R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20: 277–319, https://doi.org/10.1108/S1474-7979(2009)0000020014 [Google Scholar]
  336. Hulland, J. (1999). Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strategic Management Journal, 20(2): 195–204. https://doi.org/10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7 [Google Scholar]
  337. Hu, P.J., Chau, P.Y., Liu Sheng, O.R. and Tam, K.Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, 16(2): 91–112, https://doi.org/10.1080/07421222.1999.11518247 [Google Scholar]
  338. Indrawati and Haryoto, K.S. (2015). The Use of Modifed Theory of Acceptance and Use of Technology 2 to Predict Prospective Users’ Intention in Adopting TV Streaming. Istambuł, ICOCI: 206–215. [Google Scholar]
  339. Indrawati and Marhaeni, G.A.M.M. (2015). Predicting instant messenger application adoption using a Unifed Theory of Acceptance and Use of Technology. Istambuł, International Conference on Computing and Informatics, ICOCI 2015. [Google Scholar]
  340. Jarvenpaa, S.L., Tractinsky, N. and Saarinen, L. (1999). Consumer Trust in an Internet Store: A Cross-Cultural Validation. Journal of Computer-Mediated Communication, 5(2): 1–35, https://doi.org/10.1111/j.1083-6101.1999.tb00337.x [Google Scholar]
  341. Klimontowicz, M. (2014). Rynek płatności mobilnych w Polsce – perspektywy rozwoju. Annales Universitatis Mariae Curie-Skłodowska, 48(3): 137–146, https://doi.org/10.17951/h.2015.48.3.137 [Google Scholar]
  342. Kossecki, P. and Świerczyńska-Kaczor, U. (2011). Trust in social networks. Journal of Management and Business Administration. Central Europe, 19(5): 97–113. [Google Scholar]
  343. Kruger, D. and Byker, D. (2009). Evolved foraging psychology underlies sex differences in shopping experiences and behaviors. Journal of Social, Evolutionary and Cultural Psychology, 3(4): 315–327, https://doi.org/10.1037/h0099312 [Google Scholar]
  344. Labouvie-Vief, G. and Blanchard-Fields, F. (1982). Cognitive ageing and psychological growth. Aging and Society, 2: 183–209. [Google Scholar]
  345. Lustig, C., Konkel, A. and Jacoby, L.L. (2004). Which Route to Recovery? Psychological Science, 15(11): 729–735, https://doi.org/10.1111/j.0956-7976.2004.00749.x [Google Scholar]
  346. Mącik, R. (2013). Technologie informacyjne i komunikacyjne jako moderator procesów podejmowania decyzji zakupowych przez konsumentów. Lublin: Wydawnictwo Uniwersytetu Marii Curie- -Skłodowskiej. [Google Scholar]
  347. McKnight, D.H., Choudhury, V. and Kacmar, C. (2002). The impact of initial consumer trust on intentions to transact with a web site: a trust building model. Journal of Strategic Information Systems, 11: 297–323, https://doi.org/10.1016/S0963-8687(02)00020-3 [Google Scholar]
  348. McKnight, H.D., Choudhury, V. and Kacmar, C. (2002). Developing and Validating Trust Measures for e-Commerce: An Integrative Typology. Information Systems Research, 13(3): 334–359, https://doi.org/10.1287/isre.13.3.334.81 [Google Scholar]
  349. Meyers-Levy, J. and Maheswaran, D. (1991). Exploring Differences in Males’ and Females’ Processing Strategy. Journal of Consumer Research, 18(1): 63–70, https://doi.org/10.1086/209241 [Google Scholar]
  350. mGenerator.pl (2014). Handel mobilny w praktyce 2014. 2 edycja raportu na temat rynku m-commerce w Polsce, UE i USA. [Google Scholar]
  351. Mikowska, M. (2015). Polska jest Mobi, s.l.: Jestem mobi, http://www.tnsglobal.pl/coslychac/fles/2015/05/POLSKA_JEST_MOBI_2015.pdf [Google Scholar]
  352. Moore, G.C. and Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3): 192–222, https://doi.org/10.1287/isre.2.3.192 [Google Scholar]
  353. Murray, K.B. and Haubl, G. (2007). Explaining Cognitive Lock-In: The Role of Skill-Based Habits of Use in Consumer Choice. Journal of Consumer Research, 34(1): 77–88, https://doi.org/10.1086/513048 [Google Scholar]
  354. Pavlou, P.A. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3): 101–134. [Google Scholar]
  355. Ringle, C., Wende, S. and Becker, J.-M. (2015). SmartPLS 3. Hamburg: http://www.smartpls.com. [Google Scholar]
  356. Rogers, E.M. (1983). Diffusion of Innovations. 3rd ed. New York: The Free Press. [Google Scholar]
  357. Rondan-Cataluna, J.F., Arenas-Gaitan, J. and Ramirez-Correa, P.E. (2015). A comparison of different versions of technology acceptance models. A non-linear perspective. Kybernetes, 44(5): 788–805, https://doi.org/10.1108/K-09-2014-0184 [Google Scholar]
  358. Rosen, P. (2005). The Effect of Personal Innovativeness on Technology Acceptance and Use. PhD Dissertation. Oklahoma City: Oklahoma State University. [Google Scholar]
  359. Seock, Y.-K. and Bailey, L.R. (2008). The influence of college students’ shopping orientations and gender differences on online information searches and purchase behaviours. International Journal of Consumer Studies, 32: 113–121, https://doi.org/10.1111/j.1470-6431.2007.00647.x [Google Scholar]
  360. Slade, E.L., Dwivedi, Y.K., Piercy, N.C. and Williams, M.D. (2015). Modeling Consumers’ Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending UTAUT with Innovativeness, Risk,and Trust. Psychology & Marketing, 32(8): 860–873, https://doi.org/10.1002/mar.20823 [Google Scholar]
  361. Slama, M. and Tashchian, A. (1985). Selected Socioeconomic and Demographic Characteristics Associated with Purchasing Involvement. Journal of Marketing, 49(1): 77–82, https://doi.org/10.2307/1251177 [Google Scholar]
  362. Taylor, S. and Todd, P. (1995). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19(4): 561–570, https://doi.org/10.2307/249633 [Google Scholar]
  363. Thompson, R., Higgins, C. and Howell, J. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1): 124–143, https://doi.org/10.2307/249443 [Google Scholar]
  364. Tifferet, S. and Herstein, R. (2012). Gender differences in brand commitment, impulse buying, and hedonic consumption. Journal of Product & Brand Management, 21(3): 176–182, https://doi.org/10.1108/10610421211228793 [Google Scholar]
  365. Triandis, H. (1980). Values, Attitudes, and Interpersonal Behavior. In: Nebraska Symposium on Motivation (1979), Beliefs, Attitudes, and Values. Lincoln: University of Nebraska Press. [Google Scholar]
  366. Trojanowski, M. and Kułak, J. (2016). Wpływ postrzeganego ryzyka na proces korzystania przez konsumentów z mobilnego handlu elektronicznego – rozszerzenie modelu UTAUT2. Warszawa: Uniwersytet Ekonomiczny w Poznaniu. [Google Scholar]
  367. Van Slyke, C., Comunale, C.L. and Belanger, F. (2002). Gender Differences in Perceptions of WebBased Shopping. Communications of the ACM, 45(7): 82–86, https://doi.org/10.1145/545151.545155 [Google Scholar]
  368. Venkatesh, V. and Davis, F.D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2): 186–204, https://doi.org/10.1287/mnsc.46.2.186.11926 [Google Scholar]
  369. Venkatesh, V., Morris, M. and Ackerman, P. (2000). A longitudinal feld investigation of gender differences in individual technology adoption decision-making processes. Organizational Behavior and Human Decision Processes, 83(1): 33–60, https://doi.org/10.1006/obhd.2000.2896 [Google Scholar]
  370. Venkatesh, V., Morris, M.G., Davis, G.B. and Davis, F.D. (2003). User Acceptance of Information Technology: Toward a Unifed View. MIS Quarterly, 27(3): 425–247. [Google Scholar]
  371. Venkatesh, V., Thong, J.Y. and Xu, X. (2012). Consumer acceptance and use of information technology: Extending The Unifed Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1): 157–178. [Google Scholar]
  372. Wong, C.-H., Tan, G. W.-H., Loke, S.-P. and Ooi, K.-B. (2014). Mobile TV: a new form of entertainment? Industrial Management & Data Systems, 114(7): 1050–1067, https://doi.org/10.1108/IMDS-05-2014-0146 [Google Scholar]
  373. Wong, K. K.-K. (2013). Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS. Marketing Bulletin, 24: 1–32. [Google Scholar]
  374. Xu, X. (2014). Understanding Users’ Continued Use of Online Games: An Application of UTAUT2 in Social Network Games. Nicea, MMEDIA: 58–65. [Google Scholar]
  375. Zeithaml, V.A. and Fuerst, W.L. (1983). Age Differences in Response to Grocery Store Price Information. The Journal of Consumer Affairs, 17(2): 402–420, https://doi.org/10.1111/j.1745-6606.1983.tb00311.x [Google Scholar]
  376. Boundless Psychology (2016). Criticisms of the Social-Cognitive Perspectives on Personality, https:// www.boundless.com/psychology/textbooks/boundless-psychology-textbook/personality-16/ social-cognitive-perspectives-on-personality-81/criticisms-of-the-social-cognitive-pespective-on-personality-316-12851/ (21.02.2017). [Google Scholar]
  377. Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50: 179–211, https://doi.org/10.1016/0749-5978(91)90020-T [Google Scholar]
  378. Alazzam, M.B. et al. (2016). Trust in stored data in EHRs acceptance of medical staff: using UTAUT2. International Journal of Applied Engineering Research, 11(4): 2737–2748. [Google Scholar]
  379. Albugami, M. and Bellaaj, M. (2014). The continued use of internet banking – combining UTAUT2 theory and service quality model. Journal of Global Management Research, 10(1): 11–28. [Google Scholar]
  380. An, L., Han, Y. and Tong, L. (2016). Study on the Factors of Online Shopping Intention for Fresh Agricultural Products Based on UTAUT2. Chongqing, Atlantis Press, https://doi.org/10.2991/itoec-16.2016.57 [Google Scholar]
  381. Bagozzi, R.P. (1992). The self regulation of attitudes, intentions, and behavior. Social Psychology Quarterly, 55: 178–204, https://doi.org/10.2307/2786945 [Google Scholar]
  382. Bagozzi, R.P. and Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1): 74–94, https://doi.org/10.1007/BF02723327 [Google Scholar]
  383. Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs: Prentice-Hall Inc. [Google Scholar]
  384. Baptista, G. and Oliveira, T. (2015). Understanding mobile banking: The unifed theory of acceptance and use of technology combined with cultural moderators. Computers in Human Behavior, 50: 418–430, https://doi.org/10.1016/j.chb.2015.04.024 [Google Scholar]
  385. Batorski, D. (2015). Korzystanie z mediów 2015. Diagnoza społeczna 2015. Warunki i jakość życia Polaków, konferencja prasowa PAP, Warszawa. [Google Scholar]
  386. Chae, M. and Kim, J. (2003). What’s so different about the mobile Internet? Communications of the ACM, 46(12): 240–247, https://doi.org/10.1145/953460.953506 [Google Scholar]
  387. Chau, P.Y.K. and Hui, K.L. (1998). Identifying Early Adopters of New IT Products: A Case of Windows 95. Information & Management, 33(5): 225–230, https://doi.org/10.1016/S0378-7206(98)00031-7 [Google Scholar]
  388. Chin, W., Marcolin, B. and Newsted, P. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14: 189–217. https://doi.org/10.1287/isre.14.2.189.16018 [Google Scholar]
  389. Chuttur, M. (2009). Overview of the Technology Acceptance Model: Origins, Developments and Future Directions. Sprouts: Working Papers on Information Systems, 9(37): 1–22. [Google Scholar]
  390. Compeau, D.R. and Higgins, C.A. (1995). Computer self-effcacy: development of a measure and initial test. MIS Quarterly, 19(2): 189–211, https://doi.org/10.2307/249688 [Google Scholar]
  391. Cruz, P., Neto, L., Munoz-Gallego, P. and Laukkanen, T. (2010). Mobile banking rollout in emerging markets: evidence from Brazil. International Journal of Bank Marketing, 28(5): 342–371, https://doi.org/10.1108/02652321011064881 [Google Scholar]
  392. Czapiński, J. and Panek, T. (2015). Diagnoza społeczna 2015. Warunki i jakość życia Polaków. Warszawa: Rada Monitoring Społecznego. [Google Scholar]
  393. Davis, F. (1986). A technology acceptance model for empirically testing new end-user information systems: theory and results. Cambridge: Unpublished Doctoral dissertation, MIT Sloan School of Management. [Google Scholar]
  394. Davis, F.D., Bagozzi, R.P. and Warshaw, P.R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14): 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x [Google Scholar]
  395. Escobar-Rodríguez, T. and Carvajal-Trujillo, E. (2014). Online purchasing tickets for low cost carriers: An application of the unifed theory of acceptance and use of technology (UTAUT) model. Tourism Management, 43: 70–88, https://doi.org/10.1016/j.tourman.2014.01.017 [Google Scholar]
  396. Falk, F.R. and Miller, N.B. (1992). A Primer for Soft Modeling. 1st ed. Akron: The University of Akron. [Google Scholar]
  397. Fishbein, M. (2008). A Reasoned Action Approach to Health Promotion. Medical Decision Making, 28(6): 834–844, https://doi.org/10.1177/0272989X08326092 [Google Scholar]
  398. Fishbein, M. and Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading: Addison-Wesley. [Google Scholar]
  399. Fornell, C. and Larcker, D.F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1): 39–50, https://doi.org/10.2307/3151312 [Google Scholar]
  400. Gaitan-Arenas, J., Peral-Peral, B. and Ramon-Jeronimo, M.A. (2015). Elderly and Internet Banking: An Application of UTAUT2. Journal of Internet Banking and Commerce, 20(1): 1–23. [Google Scholar]
  401. Garson, G. (2016). Partial Least Square: Regression and Structural Equation Models. 1st ed. Asheboro: Statistical Publishing Associates. [Google Scholar]
  402. Gefen, D., Karahanna, E. and Straub, D.W. (2003). Trust and TAM in online shopping. MIS Quarterly, 27(1): 51–90. [Google Scholar]
  403. Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 27: 725–737, https://doi.org/10.1016/S0305-0483(00)00021-9 [Google Scholar]
  404. Hair, J.F., Hult, G.T.M., and Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 1st ed. Thousand Oaks: Sage. [Google Scholar]
  405. Hair, J.F.J., Sarstedt, M.H.L. and Kuppelwieser, V.G. (2014). Partial least squares structural equation modeling (PLS-SEM). An emerging tool in business research. European Business Review, 26(2): 106–121, https://doi.org/10.1108/EBR-10-2013-0128 [Google Scholar]
  406. Hair, J.F., Ringle, C.M. and Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2): 139–151, https://doi.org/10.2753/MTP1069-6679190202 [Google Scholar]
  407. Hair, J.F., Sarstedt, M., Ringle, C.M. and Mena, J.A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40: 414–433, https://doi.org/10.1007/s11747-011-0261-6 [Google Scholar]
  408. Hart, P. and Saunders, C. (1997). Power and Trust: Critical Factors in the Adoption and Use of Electronic Data Interchange. Organization Science, 8(1): 23–42, https://doi.org/10.1287/orsc.8.1.23 [Google Scholar]
  409. Henseler, J., Ringle, C.M. and Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3): 405–431, https://doi.org/10.1108/IMR-09-2014-0304 [Google Scholar]
  410. Henseler, J., Ringle, C. and Sinkovics, R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20: 277–319, https://doi.org/10.1108/S1474-7979(2009)0000020014 [Google Scholar]
  411. Hulland, J. (1999). Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strategic Management Journal, 20(2): 195–204. https://doi.org/10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7 [Google Scholar]
  412. Hu, P.J., Chau, P.Y., Liu Sheng, O.R. and Tam, K.Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, 16(2): 91–112, https://doi.org/10.1080/07421222.1999.11518247 [Google Scholar]
  413. Indrawati and Haryoto, K.S. (2015). The Use of Modifed Theory of Acceptance and Use of Technology 2 to Predict Prospective Users’ Intention in Adopting TV Streaming. Istambuł, ICOCI: 206–215. [Google Scholar]
  414. Indrawati and Marhaeni, G.A.M.M. (2015). Predicting instant messenger application adoption using a Unifed Theory of Acceptance and Use of Technology. Istambuł, International Conference on Computing and Informatics, ICOCI 2015. [Google Scholar]
  415. Jarvenpaa, S.L., Tractinsky, N. and Saarinen, L. (1999). Consumer Trust in an Internet Store: A Cross-Cultural Validation. Journal of Computer-Mediated Communication, 5(2): 1–35, https://doi.org/10.1111/j.1083-6101.1999.tb00337.x [Google Scholar]
  416. Klimontowicz, M. (2014). Rynek płatności mobilnych w Polsce – perspektywy rozwoju. Annales Universitatis Mariae Curie-Skłodowska, 48(3): 137–146, https://doi.org/10.17951/h.2015.48.3.137 [Google Scholar]
  417. Kossecki, P. and Świerczyńska-Kaczor, U. (2011). Trust in social networks. Journal of Management and Business Administration. Central Europe, 19(5): 97–113. [Google Scholar]
  418. Kruger, D. and Byker, D. (2009). Evolved foraging psychology underlies sex differences in shopping experiences and behaviors. Journal of Social, Evolutionary and Cultural Psychology, 3(4): 315–327, https://doi.org/10.1037/h0099312 [Google Scholar]
  419. Labouvie-Vief, G. and Blanchard-Fields, F. (1982). Cognitive ageing and psychological growth. Aging and Society, 2: 183–209. [Google Scholar]
  420. Lustig, C., Konkel, A. and Jacoby, L.L. (2004). Which Route to Recovery? Psychological Science, 15(11): 729–735, https://doi.org/10.1111/j.0956-7976.2004.00749.x [Google Scholar]
  421. Mącik, R. (2013). Technologie informacyjne i komunikacyjne jako moderator procesów podejmowania decyzji zakupowych przez konsumentów. Lublin: Wydawnictwo Uniwersytetu Marii Curie- -Skłodowskiej. [Google Scholar]
  422. McKnight, D.H., Choudhury, V. and Kacmar, C. (2002). The impact of initial consumer trust on intentions to transact with a web site: a trust building model. Journal of Strategic Information Systems, 11: 297–323, https://doi.org/10.1016/S0963-8687(02)00020-3 [Google Scholar]
  423. McKnight, H.D., Choudhury, V. and Kacmar, C. (2002). Developing and Validating Trust Measures for e-Commerce: An Integrative Typology. Information Systems Research, 13(3): 334–359, https://doi.org/10.1287/isre.13.3.334.81 [Google Scholar]
  424. Meyers-Levy, J. and Maheswaran, D. (1991). Exploring Differences in Males’ and Females’ Processing Strategy. Journal of Consumer Research, 18(1): 63–70, https://doi.org/10.1086/209241 [Google Scholar]
  425. mGenerator.pl (2014). Handel mobilny w praktyce 2014. 2 edycja raportu na temat rynku m-commerce w Polsce, UE i USA. [Google Scholar]
  426. Mikowska, M. (2015). Polska jest Mobi, s.l.: Jestem mobi, http://www.tnsglobal.pl/coslychac/fles/2015/05/POLSKA_JEST_MOBI_2015.pdf [Google Scholar]
  427. Moore, G.C. and Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3): 192–222, https://doi.org/10.1287/isre.2.3.192 [Google Scholar]
  428. Murray, K.B. and Haubl, G. (2007). Explaining Cognitive Lock-In: The Role of Skill-Based Habits of Use in Consumer Choice. Journal of Consumer Research, 34(1): 77–88, https://doi.org/10.1086/513048 [Google Scholar]
  429. Pavlou, P.A. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3): 101–134. [Google Scholar]
  430. Ringle, C., Wende, S. and Becker, J.-M. (2015). SmartPLS 3. Hamburg: http://www.smartpls.com. [Google Scholar]
  431. Rogers, E.M. (1983). Diffusion of Innovations. 3rd ed. New York: The Free Press. [Google Scholar]
  432. Rondan-Cataluna, J.F., Arenas-Gaitan, J. and Ramirez-Correa, P.E. (2015). A comparison of different versions of technology acceptance models. A non-linear perspective. Kybernetes, 44(5): 788–805, https://doi.org/10.1108/K-09-2014-0184 [Google Scholar]
  433. Rosen, P. (2005). The Effect of Personal Innovativeness on Technology Acceptance and Use. PhD Dissertation. Oklahoma City: Oklahoma State University. [Google Scholar]
  434. Seock, Y.-K. and Bailey, L.R. (2008). The influence of college students’ shopping orientations and gender differences on online information searches and purchase behaviours. International Journal of Consumer Studies, 32: 113–121, https://doi.org/10.1111/j.1470-6431.2007.00647.x [Google Scholar]
  435. Slade, E.L., Dwivedi, Y.K., Piercy, N.C. and Williams, M.D. (2015). Modeling Consumers’ Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending UTAUT with Innovativeness, Risk,and Trust. Psychology & Marketing, 32(8): 860–873, https://doi.org/10.1002/mar.20823 [Google Scholar]
  436. Slama, M. and Tashchian, A. (1985). Selected Socioeconomic and Demographic Characteristics Associated with Purchasing Involvement. Journal of Marketing, 49(1): 77–82, https://doi.org/10.2307/1251177 [Google Scholar]
  437. Taylor, S. and Todd, P. (1995). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19(4): 561–570, https://doi.org/10.2307/249633 [Google Scholar]
  438. Thompson, R., Higgins, C. and Howell, J. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1): 124–143, https://doi.org/10.2307/249443 [Google Scholar]
  439. Tifferet, S. and Herstein, R. (2012). Gender differences in brand commitment, impulse buying, and hedonic consumption. Journal of Product & Brand Management, 21(3): 176–182, https://doi.org/10.1108/10610421211228793 [Google Scholar]
  440. Triandis, H. (1980). Values, Attitudes, and Interpersonal Behavior. In: Nebraska Symposium on Motivation (1979), Beliefs, Attitudes, and Values. Lincoln: University of Nebraska Press. [Google Scholar]
  441. Trojanowski, M. and Kułak, J. (2016). Wpływ postrzeganego ryzyka na proces korzystania przez konsumentów z mobilnego handlu elektronicznego – rozszerzenie modelu UTAUT2. Warszawa: Uniwersytet Ekonomiczny w Poznaniu. [Google Scholar]
  442. Van Slyke, C., Comunale, C.L. and Belanger, F. (2002). Gender Differences in Perceptions of WebBased Shopping. Communications of the ACM, 45(7): 82–86, https://doi.org/10.1145/545151.545155 [Google Scholar]
  443. Venkatesh, V. and Davis, F.D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2): 186–204, https://doi.org/10.1287/mnsc.46.2.186.11926 [Google Scholar]
  444. Venkatesh, V., Morris, M. and Ackerman, P. (2000). A longitudinal feld investigation of gender differences in individual technology adoption decision-making processes. Organizational Behavior and Human Decision Processes, 83(1): 33–60, https://doi.org/10.1006/obhd.2000.2896 [Google Scholar]
  445. Venkatesh, V., Morris, M.G., Davis, G.B. and Davis, F.D. (2003). User Acceptance of Information Technology: Toward a Unifed View. MIS Quarterly, 27(3): 425–247. [Google Scholar]
  446. Venkatesh, V., Thong, J.Y. and Xu, X. (2012). Consumer acceptance and use of information technology: Extending The Unifed Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1): 157–178. [Google Scholar]
  447. Wong, C.-H., Tan, G. W.-H., Loke, S.-P. and Ooi, K.-B. (2014). Mobile TV: a new form of entertainment? Industrial Management & Data Systems, 114(7): 1050–1067, https://doi.org/10.1108/IMDS-05-2014-0146 [Google Scholar]
  448. Wong, K. K.-K. (2013). Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS. Marketing Bulletin, 24: 1–32. [Google Scholar]
  449. Xu, X. (2014). Understanding Users’ Continued Use of Online Games: An Application of UTAUT2 in Social Network Games. Nicea, MMEDIA: 58–65. [Google Scholar]
  450. Zeithaml, V.A. and Fuerst, W.L. (1983). Age Differences in Response to Grocery Store Price Information. The Journal of Consumer Affairs, 17(2): 402–420, https://doi.org/10.1111/j.1745-6606.1983.tb00311.x [Google Scholar]

Full metadata record

Cite this record

APA style

Trojanowski, Mariusz & Kułak, Jacek (2017). Trojanowski, M. , & Kułak, J.. (2017). The Impact of Moderators and Trust on Consumer’s Intention to Use a Mobile Phone for Purchases. Central European Management Journal, 25(2), 91-116. https://doi.org/10.7206/jmba.ce.2450-7814.197 (Original work published 2017)

MLA style

Trojanowski, Mariusz and Kułak, Jacek. Trojanowski, M. , and J. Kułak. “The Impact Of Moderators And Trust On Consumer’S Intention To Use A Mobile Phone For Purchases”. 2017. Central European Management Journal, vol. 25, no. 2, 2017, pp. 91-116.

Chicago style

Trojanowski, Mariusz and Kułak, Jacek. Trojanowski, Mariusz , and Jacek Kułak. “The Impact Of Moderators And Trust On Consumer’S Intention To Use A Mobile Phone For Purchases”. Central European Management Journal, Central European Management Journal, 25, no. 2 (2017): 91-116. doi:10.7206/jmba.ce.2450-7814.197.