en pl
en pl

Decyzje

Show issue
Year 12/2019 
Issue 32

Pot and Ladle: A Formula for Estimating the Distribution Of Seats Under the Jefferson-D’hondt Method

Jarosław Flis
Uniwersytet Jagielloński w Krakowie

Wojciech Słomczyński
Uniwersytet Jagielloński w Krakowie

12/2019 (32) Decyzje

DOI 10.7206/DEC.1733-0092.129

Abstract

We propose a simple yet new formula for estimating national seat shares and quantifying seat biases in elections employing the Jefferson-D’Hondt (JDH) method for seat allocation. It is based solely on the national vote shares and fi xed parameters of the given electoral system. The proposed formula clarifi es the relationship between seat bias on the one hand, and the number of parties and the number of districts on the other. We demonstrate that the formula provides a good estimate of seat allocations in real-life elections even in the case of minor violations of the underlying assumptions. With that aim in mind, we have tested it for all nine EU countries that employ the JDH method in
parliamentary elections. Moreover, we discuss the applications of the formula for modeling the effects of vote swings, coalition formation and breakup, spoiler effects, electoral engineering, artifi cial thresholds and political gerrymandering. By not requiring district-level vote shares, our formula simplifi es electoral simulations using the JDH method.

References

  1. ACE Project (2019). Electoral system (Chamber 1). ACE Electoral Knowledge Network. http://aceproject.org/epic-en/CDMap?question=ES005&f=. [Google Scholar]
  2. Baldini, G., Pappalardo, A. (2009). Elections, electoral systems and volatile voters. Basingstoke: Palgrave Macmillan. [Google Scholar]
  3. Balinski, M.L., Young, H.P. (1978a). The Jefferson method of apportionment. SIAM Review, 20(3), 278–284, doi: 10.1137/1020040. [Google Scholar]
  4. Balinski, M.L., Young, H.P. (1978b). Stability, coalitions and schisms in proportional representation systems. American Political Science Review, 72(3), 848–858, doi: 10.2307/ 1955106. [Google Scholar]
  5. Balinski, M.L., Young, H.P. (2001). Fair representation: meeting the ideal of one man, one vote. Washington, DC: Brookings Institution Press. [Google Scholar]
  6. Barceló, J., Muraoka, T. (2018). The effect of variance in district magnitude on party system infl ation. Electoral Studies, 54, 44–55, doi: 10.1016/j.electstud.2018.04.016. [Google Scholar]
  7. Benoit, K. (2000). Which electoral formula is the most proportional? A new look with new evidence. Political Analysis, 8(4), 381–388, doi: 10.1093/oxfordjournals.pan.a029822. [Google Scholar]
  8. Blau, A. (2001). Partisan bias in British general elections. British Elections & Parties Review, 11(1), 46–65, doi: 10.1080/13689880108413053. [Google Scholar]
  9. Bochsler, D. (2010). Who gains from apparentments under D’Hondt? Electoral Studies, 29(4), 617– 627, doi: 10.1016/j.electstud.2010.06.001. [Google Scholar]
  10. Bormann, N.C., Golder, M. (2013). Democratic electoral systems around the world, 1946–2011. [Google Scholar]
  11. Electoral Studies, 32(2), 360-369, doi: 10.1016/j.electstud.2013.01.005. [Google Scholar]
  12. Brancati, D. (2007). Global Elections Database. http://www.globalelectionsdatabase.com. [Google Scholar]
  13. Calvo, E., Rodden, J. (2015). The Achilles heel of plurality systems: geography and representation in multiparty democracies. American Journal of Political Science, 59(4), 789–805, doi: 10.1111/ ajps.12167. [Google Scholar]
  14. Carey, J.M. (2017). Electoral system design in new democracies. W: Herron, E., Pekkanen, R., Shugart, M.S. (red.), Oxford handbook of electoral systems. New York: Oxford UP, 851 11, doi: 10.1093/oxfordhb/9780190258658.001.0001. [Google Scholar]
  15. Chafee, Z. (1929). Congressional reapportionment. Harvard Law Review, 42(8), 1015–1047, doi: 2307/1331072. [Google Scholar]
  16. Colomer, J.M. (2004). The handbook of electoral system choice. London: Palgrave Macmillan. [Google Scholar]
  17. Deza, M.M., Deza, E. (2014) Encyclopedia of distances. Heidelberg: Springer. [Google Scholar]
  18. Dančišin, V. (2013) Hľadanie volebného deliteľa Victorom D’Hondtom. European Electoral Studies, 10(1), 63–70. [Google Scholar]
  19. D’Hondt, V. (1882). Système pratique et raisonné de représentation proportionnelle. Bruxelles: Libraire C. Muquardt, doi: 10.3931/e-rara-39876. [Google Scholar]
  20. D’Hondt, V. (1883). Formule du minimum dans la représentation proportionnelle. Moyen facile de trouver le diviseur. Représentation proportionnelle. Revue mensuelle, 2, 117–128, 129–130. [Google Scholar]
  21. [Google Scholar]
  22. D’Hondt, V. (1885). Exposé du système pratique de représentation proportionnelle. Adopté par le Comité de l‘Association Réformiste Belge. Gand: Eug. Vanderhaeghen. [Google Scholar]
  23. Drton, M., Schwingenschlögl, U. (2005). Asymptotic seat bias formulae. Metrika, 62(1), 23–31, doi: 10.1007/s001840400352. [Google Scholar]
  24. Equer, M. (1911). Relation entre la méthode d‘Hondt et la proportionnalité. La Grande Revue, Deuxième série, 31(10 Jan.), 130–137. [Google Scholar]
  25. Evci, U.J., Kaminski, M.M. (2019). Shot in the foot: unintended political consequences of electoral engineering in the Turkish parliamentary elections in 2018. ECPR General Conference, Wrocław 2019. https://ecpr.eu/Filestore/PaperProposal/12fcff16-0906-4f9a-ae48-a3757b3cbc40.pdf. [Google Scholar]
  26. Flis J., Słomczyński W. & Stolicki D. (2019) Seat allocation and seat bias under the Jefferson-D’Hondt System. arXiv: 1805.08291 [physics.soc-ph]. [Google Scholar]
  27. Gfeller, J. (1890). Du transfert des suffrages et de la répartition des sièges complémentaires. Représentation proportionnelle. Revue mensuelle, 9, 120–131. [Google Scholar]
  28. Gudgin, G., Taylor, J.P. (1979). Seats, votes, and the spatial organisation of elections. London: Pion. [Google Scholar]
  29. Hagenbach-Bischoff, E. (1888). Die Frage der Einführung einer Proportionalvertretung statt des absoluten Mehres. Basel: H. Georg. [Google Scholar]
  30. Hagenbach-Bischoff, E. (1905). Die Verteilungsrechnung beim Basler Gesetz nach dem Grundsatz der Verhältniswahl. Basel: Berichthaus. [Google Scholar]
  31. Happacher, M., Pukelsheim, F. (1996). Rounding probabilities: unbiased multipliers. Statistics & Decisions, 14(4), 373–382, doi: 10.1524/strm.1996.14.4.373. [Google Scholar]
  32. Happacher, M., Pukelsheim, F. (2000). Rounding probabilities: maximum probability and minimum complexity multipliers. Journal of Statistical Planning and Inference, 85 (1–2), 145–158, doi: [Google Scholar]
  33. 1016/S0378-3758(99)00077-4. [Google Scholar]
  34. Humphreys, J.H. (1911). Proportional representation: a study in methods of election. London: Methuen & Co. [Google Scholar]
  35. Huntington, E.V. (1921). The mathematical theory of the apportionment of representatives. Proceedings of the National Academy of Sciences, 7(4), 123–127. [Google Scholar]
  36. Huntington, E.V. (1928). The apportionment of representatives in Congress. Transactions of the American Mathematical Society, 30(1), 85–110. [Google Scholar]
  37. Huntington, E.V. (1931). Methods of apportionment in Congress. American Political Science Review, 25(4), 961–965, doi: 10.2307/1946616. [Google Scholar]
  38. James, E.J. (1897). The fi rst apportionment of federal representatives in the United States. Annals of the American Academy of Political and Social Science, 9(1), 1–41. [Google Scholar]
  39. Janson S. (2014), Asymptotic bias of some election methods. Annals of Operations Research, 215(1), 89–136, doi: 10.1007/s10479-012-1141-2. [Google Scholar]
  40. Jefferson, T. (1792). Opinion on apportionment bill. W: Oberg, B., Looney, J.J. (2008). The Papers of Thomas Jefferson, wersja cyfrowa. Charlottesville: University of Virginia Press. [Google Scholar]
  41. Joachim, V. (1917). K otázce poměrného zastoupení. Správní obzor, 9(8), 289–298. [Google Scholar]
  42. Kaminski, M.M. (2001). Coalitional stability of multi-party systems: evidence from Poland. American Journal of Political Science, 45(2), 294–312, doi: 10.2307/2669342. [Google Scholar]
  43. Kaminski, M.M. (2002). Do parties benefi t from electoral manipulation? Electoral laws and heresthetics in Poland. Journal of Theoretical Politics, 14(3), 325–359, doi: 10.1177/ 095169280201400303. [Google Scholar]
  44. Kaminski, M.M. (2018). Spoiler effects in proportional representation systems: evidence from eight Polish parliamentary elections, 1991–2015. Public Choice, 176(3–4), 441–460, doi: 10.1007/ s11127-018-0565-x. [Google Scholar]
  45. Karpov, A. (2015). Alliance incentives under the D’Hondt method. Mathematical Social Sciences, 74(C), 1–7, doi: 10.1016/j.mathsocsci.2014.12.001. [Google Scholar]
  46. Katz, J.N., King, G. (1999). A statistical model for multiparty electoral data. American Political Science Review, 93(1), 15–32, doi: 10.2307/2585758. [Google Scholar]
  47. Kollman, K., Hicken, A., Caramani, D., Backer, D., Lublin, D. (2018). Constituency-Level Elections Archive. Ann Arbor: Center for Political Studies, University of Michigan. http://www.electiondataarchive.org. [Google Scholar]
  48. Leutgäb, P., Pukelsheim, F. (2009). List apparentements in local elections – a lottery. W: Holler, M., Nurmi, H. (red.), Power, voting, and voting power: 30 years after. Berlin: Springer, 489–500, doi:10.1007/978-3-642-35929-3_7. [Google Scholar]
  49. Li, Y., Shugart, M.S. (2016). The seat product model of the effective number of parties: a case for applied political science. Electoral Studies, 41, 23–43, doi: 10.1016/j.electstud. 2015.10.011. [Google Scholar]
  50. Lijphart, A. (1990). The political consequences of electoral laws, 1945–85. American Political Science Review, 84(2), 481–496, doi: 10.2307/1963530. [Google Scholar]
  51. Lijphart, A., Gibberd, R.W. (1977). Thresholds and payoffs in list systems of proportional representation. European Journal of Political Research, 5(3), 219–244, doi: 10.1111/j.1475-6765.1977. tb01289.x. [Google Scholar]
  52. Linzer, D.A. (2012). The relationship between seats and votes in multiparty systems. Political Analysis, 20(3), 400–416, doi: 10.1093/pan/mps017. [Google Scholar]
  53. Marshall, A.W., Olkin, I., Pukelsheim, F. (2002). A majorization comparison of apportionment methods in proportional representation. Social Choice and Welfare, 19(4), 885–900, doi: 10.1007/ s003550200164. [Google Scholar]
  54. McGhee, E. (2014). Measuring partisan bias in single–member district electoral systems. Legislative Studies Quarterly, 39(1), 55–85, doi: 10.1111/lsq.12033. [Google Scholar]
  55. McGhee, E. (2017). Measuring effi ciency in redistricting. Election Law Journal, 16(4), 417– 442, doi: 10.1089/elj.2017.0453. [Google Scholar]
  56. Mora, X. (2013). La regla de Jefferson-D’Hondt i les seves alternatives. Materials matemàtics, 2013(4), 1–34. [Google Scholar]
  57. Morse, M., Von Neumann, J., Eisenhart, L.P. (1948). Report to the President of the National Academy of Sciences. [Google Scholar]
  58. Palomares, A., Ramírez Gonzáles, V. (2003). Thresholds of the divisor methods. Numerical Algorithms, 34(2), 405–415, doi: 10.1023/B:NUMA.0000005353.82970.ce. [Google Scholar]
  59. Pavia, J., García-Cárceles, B. (2016). Estimating representatives from election poll proportions: the Spanish case. Statistica Applicata – Italian Journal of Applied Statistics, 25(3), 325–340. [Google Scholar]
  60. Pólya, G. (1918a). Sur la représentation proportionnelle en matière électorale. L’Enseignement Mathématique, 20, 355–379. [Google Scholar]
  61. Pólya, G. (1918b). Über die Verteilungssysteme der Proportionalwahl. Zeitschrift für schweizerische Statistik und Volkswirtschaft, 54, 363–387. [Google Scholar]
  62. Pólya, G. (1919a). Proportionalwahl und Wahrscheinlichkeitsrechnung. Zeitschrift für die gesamte Staatswissenschaft, 74, 297–322. [Google Scholar]
  63. Pólya, G. (1919b). Über die Systeme der Sitzverteilung bei Proportionalwahl. Wissen und Leben— Schweizerische Halbmonatsschrift, 12, 259–268, 307–312. [Google Scholar]
  64. Poptcheva, E.M. (2016). Understanding the D’Hondt method. Allocation of parliamentary seats and leadership positions. European Parliamentary Research Service Briefi ng PE 580.901, http://www.europarl.europa.eu/RegData/etudes/BRIE/2016/580901/EPRS_BRI(2016)580 901_ EN.pdf. [Google Scholar]
  65. Pukelsheim, F. (2014). Proportional representation: apportionment methods and their applications. Heidelberg: Springer. [Google Scholar]
  66. Pukelsheim, F. (2017). Proportional representation: apportionment methods and their applications. Wyd. 2. Heidelberg: Springer. [Google Scholar]
  67. Rae, D.W. (1967). The political consequences of electoral laws. New Haven, CT: Yale University Press. [Google Scholar]
  68. Rae, D.W., Hanby, V.J., Loosemore, J. (1971). Thresholds of representation and thresholds of exclusion. An analytic note on electoral systems. Comparative Political Studies, 3(4), 479–488, doi: 10.1177/001041407100300406. [Google Scholar]
  69. Rokkan, S. (1968). Elections: electoral systems. W: Sills, D.L. (red.). International encyclopaedia of the social sciences. New York: Crowell-Collier-Macmillan, 5, 6–21. [Google Scholar]
  70. Sainte-Laguë, A. (1910). La représentation proportionnelle et la méthode des moindres carrés. Annales scientifi ques de l’École Normale Supérieure, Sér. 3(27), 529–542, doi: 10.24033/asens.627. [Google Scholar]
  71. Shugart, M.S., Taagepera, R. (2017a). Votes from seats: logical models of electoral systems. Cambridge, UK: Cambridge University Press. [Google Scholar]
  72. Shugart, M.S., Taagepera, R. (2017b). Electoral system effects on party systems. W: Herron, E., Pekkanen, R., Shugart, M.S. (red.). Oxford handbook of electoral systems. New York: Oxford UP, 41–68, doi: 10.1093/oxfordhb/9780190258658.001.0001. [Google Scholar]
  73. Schuster, K., Pukelsheim, F., Drton, M., Draper, N.R. (2003). Seat biases of apportionment methods for proportional representation. Electoral Studies, 22(4), 651–676, doi: 10.1016/ S02613794(02)00027-6. [Google Scholar]
  74. Stephanopoulos, N.O., McGhee, E.M. (2015). Partisan gerrymandering and the effi ciency gap. University of Chicago Law Review, 82(2), 831–900. [Google Scholar]
  75. Stephanopoulos, N.O., McGhee, E.M. (2018). The measure of a metric: the debate over quantifying partisan gerrymandering. Stanford Law Review, 70(5), 1503–1568. [Google Scholar]
  76. Szpiro, G.G. (2010). Numbers rule: the vexing mathematics of democracy, from Plato to the present. Princeton, NJ: Princeton University Press. [Google Scholar]
  77. Taagepera, R. (1986). Reformulating the cube law for proportional representation elections. American Political Science Review, 80(2), 489–504, doi: 10.2307/1958270. [Google Scholar]
  78. Taagepera, R. (2007). Predicting party sizes: the logic of simple electoral systems. Oxford: Oxford University Press. [Google Scholar]
  79. Taagepera, R., Laakso, M. (1980). Proportionality profi les of West European electoral systems. European Journal of Political Research, 8(4), 423–446, doi: 10.1111/j.14756 765.1980.tb00582.x. [Google Scholar]
  80. Taagepera, R., Shugart, M.S. (1989). Seats and votes: the effects and determinants of electoral systems. New Haven, CT: Yale University Press. [Google Scholar]
  81. Tapp, K. (2018). Measuring political gerrymandering. American Mathematical Monthly, 126(7), 593-609, doi: 10.1080/00029890.2019.1609324. [Google Scholar]
  82. Udina, F., Delicado, P. (2005). Estimating parliamentary composition through electoral polls. Journal of the Royal Statistical Society. Series A (Statistics in Society), 168(2), 387– 399. [Google Scholar]
  83. Veomett, E. (2018). The effi ciency gap, voter turnout, and the effi ciency principle. Election Law Journal, 17(4), 249-263, doi: 10.1089/elj.2018.0488. [Google Scholar]

Full metadata record

Cite this record

APA style

Pot and Ladle: A Formula for Estimating the Distribution Of Seats Under the Jefferson-D’hondt Method. (2019). Pot and Ladle: A Formula for Estimating the Distribution Of Seats Under the Jefferson-D’hondt Method. Decyzje, (32), 5-40. https://doi.org/10.7206/DEC.1733-0092.129 (Original work published 12/2019AD)

MLA style

“Pot And Ladle: A Formula For Estimating The Distribution Of Seats Under The Jefferson-D’Hondt Method”. 12/2019AD. Decyzje, no. 32, 2019, pp. 5-40.

Chicago style

“Pot And Ladle: A Formula For Estimating The Distribution Of Seats Under The Jefferson-D’Hondt Method”. Decyzje, Decyzje, no. 32 (2019): 5-40. doi:10.7206/DEC.1733-0092.129.