en pl
en pl

Central European Management Journal

Show issue
Year 2016 
Volume 24 
Issue 3

Improving of Business Planning Using the Method of Fuzzy Numbers

Iryna Kostetska
Lviv National Agrarian University

2016 24 (3) Central European Management Journal

DOI 10.7206/jmba.ce.2450-7814.175

Abstract

Purpose: Summarize the experience of using modern methods in the business plan with the application of economic and mathematical modeling.

Methodology: Theoretical and methodological basis of the study is the basic principles of economic theory, agricultural economics and scientific research of leading home and foreign scholars on the theory of planning.

Originality: This further justifies business planning processes in agriculture from the standpoint of raising economic protection of farmers. The methodology for assessing farm income for planned indicators through the application of fuzzy numbers method in business planning is improved.

References

  1. Altunyn, A.E. and Semhyn, M.V. (2000). Models and algorithms for decision making in fuzzy conditions. Tyumen: Tyumen State University. [Google Scholar]
  2. Berezovsky, P.S. and Mykhalyuk, N.I. (2004). The organization, forecasting and planning of agriculture. Lviv: “Magnolia Plus”; SPD FL V. M. Picha. [Google Scholar]
  3. Chopra V.K. (1998). The Effects of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice. In: V.K. Chopra and W.T. Ziemba (eds.), Worldwide Asset And Liability Modeling. Cambridge: Cambridge University Press. [Google Scholar]
  4. Drobot, V.I., Martianov, V.P., Soloviev M.F. et al. (2003). The business plan of agricultural enterprises: teach. guidance. [Google Scholar]
  5. Drucker, P. (1994). How to ensure business success, innovation and entrepreneurship. Transl. from English. Ukraine. [Google Scholar]
  6. Grebennikov, E.V. and Trofimov, V.V. (2007). Messenger of Russian state trade-economic university. 4(20): 133–141. [Google Scholar]
  7. Hubeni J.E. and Kostetska, I. (2011). Modern methods in business planning. Economy of AIC, 6: 90–93. [Google Scholar]
  8. Hubeni, Y. (2012). Entrepreneurship: a tutorial. L.: Eng. Sc. [Google Scholar]
  9. Klebanov, T.S. and Zabrodskyy, V.A. et al. (2001). Modeling economy. Kharkiv: Vol. HSEU. [Google Scholar]
  10. Lynenko, A.V. (2007). Features of business plan. In: A.V. Lysenko and N.V. Haltobina, Countries and regions, 2. [Google Scholar]
  11. Maryuta, O.M. and Boytsun, N.E. (2002). Statistical methods and models in economics. Dnepropetrovsk. [Google Scholar]
  12. Nedosekin, A. (2003). Fuzzy Financial Management, http:/sedok.narod.ru/ index.html (20.12.2014). [Google Scholar]
  13. Sizonenko V.A. (2003). Modern business: directory. Knowledge Press. [Google Scholar]
  14. Syavavko, C. (1999). Fuzzy modeling of AIC. Theory and practice of agriculture: Proceedings of the International Scientific Conference. Lviv: Lviv State Agrarian University. [Google Scholar]
  15. Vovk, S. and Syavavko, M. (1999). The concept of game theory and statistical solutions in the agricultural sector with fuzzy input information. Theory and practice of agriculture: Proceedings of the International Scientific Conference. Lviv: Lviv State Agrarian University. [Google Scholar]
  16. Zadeh, L.A. (1978). Fuzzy Sets as a Basis for a Theory of Possibility. In: Fuzzy Sets and Systems, 1(1). Zadeh, L.A. (2014). http://http.cs.berkeley.edu/People/Faculty/Homepages/ zadeh.html (20.12.2014). [Google Scholar]
  17. Altunyn, A.E. and Semhyn, M.V. (2000). Models and algorithms for decision making in fuzzy conditions. Tyumen: Tyumen State University. [Google Scholar]
  18. Berezovsky, P.S. and Mykhalyuk, N.I. (2004). The organization, forecasting and planning of agriculture. Lviv: “Magnolia Plus”; SPD FL V. M. Picha. [Google Scholar]
  19. Chopra V.K. (1998). The Effects of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice. In: V.K. Chopra and W.T. Ziemba (eds.), Worldwide Asset And Liability Modeling. Cambridge: Cambridge University Press. [Google Scholar]
  20. Drobot, V.I., Martianov, V.P., Soloviev M.F. et al. (2003). The business plan of agricultural enterprises: teach. guidance. [Google Scholar]
  21. Drucker, P. (1994). How to ensure business success, innovation and entrepreneurship. Transl. from English. Ukraine. [Google Scholar]
  22. Grebennikov, E.V. and Trofimov, V.V. (2007). Messenger of Russian state trade-economic university. 4(20): 133–141. [Google Scholar]
  23. Hubeni J.E. and Kostetska, I. (2011). Modern methods in business planning. Economy of AIC, 6: 90–93. [Google Scholar]
  24. Hubeni, Y. (2012). Entrepreneurship: a tutorial. L.: Eng. Sc. [Google Scholar]
  25. Klebanov, T.S. and Zabrodskyy, V.A. et al. (2001). Modeling economy. Kharkiv: Vol. HSEU. [Google Scholar]
  26. Lynenko, A.V. (2007). Features of business plan. In: A.V. Lysenko and N.V. Haltobina, Countries and regions, 2. [Google Scholar]
  27. Maryuta, O.M. and Boytsun, N.E. (2002). Statistical methods and models in economics. Dnepropetrovsk. [Google Scholar]
  28. Nedosekin, A. (2003). Fuzzy Financial Management, http:/sedok.narod.ru/ index.html (20.12.2014). [Google Scholar]
  29. Sizonenko V.A. (2003). Modern business: directory. Knowledge Press. [Google Scholar]
  30. Syavavko, C. (1999). Fuzzy modeling of AIC. Theory and practice of agriculture: Proceedings of the International Scientific Conference. Lviv: Lviv State Agrarian University. [Google Scholar]
  31. Vovk, S. and Syavavko, M. (1999). The concept of game theory and statistical solutions in the agricultural sector with fuzzy input information. Theory and practice of agriculture: Proceedings of the International Scientific Conference. Lviv: Lviv State Agrarian University. [Google Scholar]
  32. Zadeh, L.A. (1978). Fuzzy Sets as a Basis for a Theory of Possibility. In: Fuzzy Sets and Systems, 1(1). Zadeh, L.A. (2014). http://http.cs.berkeley.edu/People/Faculty/Homepages/ zadeh.html (20.12.2014). [Google Scholar]
  33. Altunyn, A.E. and Semhyn, M.V. (2000). Models and algorithms for decision making in fuzzy conditions. Tyumen: Tyumen State University. [Google Scholar]
  34. Berezovsky, P.S. and Mykhalyuk, N.I. (2004). The organization, forecasting and planning of agriculture. Lviv: “Magnolia Plus”; SPD FL V. M. Picha. [Google Scholar]
  35. Chopra V.K. (1998). The Effects of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice. In: V.K. Chopra and W.T. Ziemba (eds.), Worldwide Asset And Liability Modeling. Cambridge: Cambridge University Press. [Google Scholar]
  36. Drobot, V.I., Martianov, V.P., Soloviev M.F. et al. (2003). The business plan of agricultural enterprises: teach. guidance. [Google Scholar]
  37. Drucker, P. (1994). How to ensure business success, innovation and entrepreneurship. Transl. from English. Ukraine. [Google Scholar]
  38. Grebennikov, E.V. and Trofimov, V.V. (2007). Messenger of Russian state trade-economic university. 4(20): 133–141. [Google Scholar]
  39. Hubeni J.E. and Kostetska, I. (2011). Modern methods in business planning. Economy of AIC, 6: 90–93. [Google Scholar]
  40. Hubeni, Y. (2012). Entrepreneurship: a tutorial. L.: Eng. Sc. [Google Scholar]
  41. Klebanov, T.S. and Zabrodskyy, V.A. et al. (2001). Modeling economy. Kharkiv: Vol. HSEU. [Google Scholar]
  42. Lynenko, A.V. (2007). Features of business plan. In: A.V. Lysenko and N.V. Haltobina, Countries and regions, 2. [Google Scholar]
  43. Maryuta, O.M. and Boytsun, N.E. (2002). Statistical methods and models in economics. Dnepropetrovsk. [Google Scholar]
  44. Nedosekin, A. (2003). Fuzzy Financial Management, http:/sedok.narod.ru/ index.html (20.12.2014). [Google Scholar]
  45. Sizonenko V.A. (2003). Modern business: directory. Knowledge Press. [Google Scholar]
  46. Syavavko, C. (1999). Fuzzy modeling of AIC. Theory and practice of agriculture: Proceedings of the International Scientific Conference. Lviv: Lviv State Agrarian University. [Google Scholar]
  47. Vovk, S. and Syavavko, M. (1999). The concept of game theory and statistical solutions in the agricultural sector with fuzzy input information. Theory and practice of agriculture: Proceedings of the International Scientific Conference. Lviv: Lviv State Agrarian University. [Google Scholar]
  48. Zadeh, L.A. (1978). Fuzzy Sets as a Basis for a Theory of Possibility. In: Fuzzy Sets and Systems, 1(1). Zadeh, L.A. (2014). http://http.cs.berkeley.edu/People/Faculty/Homepages/ zadeh.html (20.12.2014). [Google Scholar]
  49. Altunyn, A.E. and Semhyn, M.V. (2000). Models and algorithms for decision making in fuzzy conditions. Tyumen: Tyumen State University. [Google Scholar]
  50. Berezovsky, P.S. and Mykhalyuk, N.I. (2004). The organization, forecasting and planning of agriculture. Lviv: “Magnolia Plus”; SPD FL V. M. Picha. [Google Scholar]
  51. Chopra V.K. (1998). The Effects of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice. In: V.K. Chopra and W.T. Ziemba (eds.), Worldwide Asset And Liability Modeling. Cambridge: Cambridge University Press. [Google Scholar]
  52. Drobot, V.I., Martianov, V.P., Soloviev M.F. et al. (2003). The business plan of agricultural enterprises: teach. guidance. [Google Scholar]
  53. Drucker, P. (1994). How to ensure business success, innovation and entrepreneurship. Transl. from English. Ukraine. [Google Scholar]
  54. Grebennikov, E.V. and Trofimov, V.V. (2007). Messenger of Russian state trade-economic university. 4(20): 133–141. [Google Scholar]
  55. Hubeni J.E. and Kostetska, I. (2011). Modern methods in business planning. Economy of AIC, 6: 90–93. [Google Scholar]
  56. Hubeni, Y. (2012). Entrepreneurship: a tutorial. L.: Eng. Sc. [Google Scholar]
  57. Klebanov, T.S. and Zabrodskyy, V.A. et al. (2001). Modeling economy. Kharkiv: Vol. HSEU. [Google Scholar]
  58. Lynenko, A.V. (2007). Features of business plan. In: A.V. Lysenko and N.V. Haltobina, Countries and regions, 2. [Google Scholar]
  59. Maryuta, O.M. and Boytsun, N.E. (2002). Statistical methods and models in economics. Dnepropetrovsk. [Google Scholar]
  60. Nedosekin, A. (2003). Fuzzy Financial Management, http:/sedok.narod.ru/ index.html (20.12.2014). [Google Scholar]
  61. Sizonenko V.A. (2003). Modern business: directory. Knowledge Press. [Google Scholar]
  62. Syavavko, C. (1999). Fuzzy modeling of AIC. Theory and practice of agriculture: Proceedings of the International Scientific Conference. Lviv: Lviv State Agrarian University. [Google Scholar]
  63. Vovk, S. and Syavavko, M. (1999). The concept of game theory and statistical solutions in the agricultural sector with fuzzy input information. Theory and practice of agriculture: Proceedings of the International Scientific Conference. Lviv: Lviv State Agrarian University. [Google Scholar]
  64. Zadeh, L.A. (1978). Fuzzy Sets as a Basis for a Theory of Possibility. In: Fuzzy Sets and Systems, 1(1). Zadeh, L.A. (2014). http://http.cs.berkeley.edu/People/Faculty/Homepages/ zadeh.html (20.12.2014). [Google Scholar]

Full metadata record

Cite this record

APA style

Kostetska, Iryna (2016). Kostetska, I. . (2016). Improving of Business Planning Using the Method of Fuzzy Numbers. Central European Management Journal, 24(3), 67-61. https://doi.org/10.7206/jmba.ce.2450-7814.175 (Original work published 2016)

MLA style

Kostetska, Iryna. Kostetska, I. . “Improving Of Business Planning Using The Method Of Fuzzy Numbers”. 2016. Central European Management Journal, vol. 24, no. 3, 2016, pp. 67-61.

Chicago style

Kostetska, Iryna. Kostetska, Iryna . “Improving Of Business Planning Using The Method Of Fuzzy Numbers”. Central European Management Journal, Central European Management Journal, 24, no. 3 (2016): 67-61. doi:10.7206/jmba.ce.2450-7814.175.