

 Vol 7 Issue 7.1 2008 ISSN 1532-5555

20

Software engineers or artists? Programmers’ identity choices

Dariusz Jemielniak
 Kozminski Business School, Poland

A novice programmer was once assigned to code a simple financial package. The novice
worked furiously for many days, but when his master reviewed his program, he discovered that
it contained a screen editor, a set of generalized graphics routines, an artificial intelligence
interface, but not the slightest mention of anything financial. When the master asked about this,
the novice became indignant. “Don’t be so impatient,” he said. “I’ll put in the financial stuff
eventually.” (James, 1986)

ABSTRACT

This paper explores how assigning software developers the identity of “engineers” metes out
specific assumptions about IT projects. To this end, the paper describes an alternative
metaphor of programming as art, which is commonly used by the programmers interviewed. In
addition, the discussion draws conclusions from the discrepancies between the two views as
well as from the proposed metaphor, explaining organizational reluctance to aesthetical
vocabulary. This paper discusses occupational identity—emphasizing the identity of
programmers—using qualitative research methods. As such, it enriches the literature currently
available on this profession.

INTRODUCTION

Software development has traditionally
been perceived as an engineering field
(McDermid, 1991; Pressman, 1992; Lewerentz
and Rust, 2000), which is even reflected in this
field’s common name: “software engineering.”
Initially, as in all young disciplines, software
development was defined by categories and
meanings taken from others (Bryant, 2000).
This process was by no means unusual; for
example, management theory was also initially
understood as an engineering subdivision, and
this approach prevails even today in some
business concepts (Boje and Winsor, 1993;
Shenhav, 1999). Moreover, comparing
software creation to the formation of material
construction is certainly a metaphor that is
useful in many respects. However, as with any
metaphor, accentuating certain traits of the
described phenomenon obscures others.
Although plausible, it also carries a risk of
becoming accepted as the only possible
view—a cognitive mistake that narrows our
minds. Indeed, as long as we do not perceive
that we deal with a theoretical abstract rather

than with “reality itself,” we tend to ignore
anything that does not fit the image (Morgan,
1983, 1986). However, it should not be
forgotten that, although commonly described in
a similar language, software is by no means a
physical construction. It may resemble such in
many respects, yet it does not in others.

As Anthony Bryant (2000) points out,

the current widespread and unreflective
acceptance of this metaphor may have a huge
negative impact on the practice of
programming. Indeed, the way in which
software developers’ professional identity is
defined may influence IT businesses in many
respects. Perceiving programmers2 as
engineers easily leads to giving them
“construction specifications” instead of joint
brainstorming on what the software can do (as
would be the case, for example, with interior
designers). Such an approach results in
perceiving the knowledge about software as

2
 In this paper I intentionally use the word programmer instead of

software engineer, although in the common language they are
not entirely interchangeable and a programmer is sometimes
considered to have a lower labor status.

Jemielniak

21

quantitative, clearly structured, and orderly
rather than qualitative, based on intuition, and
messy. Thus, programmers begin to be seen
as interchangeable agents who can take over
work from each other or whose efficiency can
be improved by assigning more people to the
project. These blatant assumptions (Brookes,
1995) may all play a role in constructing the
role of a software creator as an engineer. They
may also have another negative side effect—
namely, programming is reduced to a
mechanical task that, although requiring a lot
of intelligence, is rather individual than
collective. In reality, the social side of software
development is quite crucial (Kociatkiewicz
and Kostera, 2003).

In this light, it should not be surprising

that programmers quite often do not
characterize themselves as engineers. In fact,
they criticize such bracketing (Brookes, 1995;
Beizer, 2000; McBreen, 2002). However, the
alternatives for engineer identity representation
are much less described. Therefore, it may be
interesting to search for other useful
metaphors of software development and
determine other ways in which programmers
define their own vocational identity.

IDENTITY BATTLEFIELD

The way in which a given occupation is
addressed is by no means trivial. The imposed
identity implicates a whole set of behaviors
and assumptions. The enactment of
occupational identities is especially interesting
in times of liquid careers and roles (Bauman,
2007). Contemporary organizations are
characterized by more individualized and
short-term organizational identities, in decline
of stable organizational structure and career-
paths (Bauman, 1998; Beck, 2000). Thus,
while posts, responsibilities, employers, and
even the very content of work do change,
especially in case of knowledge-workers the
professional identity stays. The way key
organizational actors are perceived and
defined is, therefore, of utter importance.

For the purpose of this paper, an

(occupational) identity is understood as a

combination of social roles and expectations,
enacted jointly by the actor, the organizational
script, and the surrounding environment and
resulting in a consistent collection of
assumptions toward the view of self (Ashforth
and Kreiner, 1999). Occupational self-definition
(an identity) is a means of situating the carrier
in a wider context and determining what s/he
does, believes, or even feels (Ashforth and
Humphrey, 1995); it determines to a large
extent how people are perceived and is one of
the key components of social power. This
practice of continuously identifying one’s self
and others, as well as continuously receiving
and applying labels, is inevitably embedded in
organizational discourse (Grant, Keenoy and
Oswick, 1998; Knights and Willmott, 1999). In
this sense, it is useful to perceive
organizational identities as “socially
constructed stories about individuals and their
surroundings as they engage in social work
practices” (Westenholz, 2006: 1018).

Michael Rosen writes about managerial

manipulation at an advertising agency in such
words (1985/91: 89):

Managerial domination in practice is
maintained not by an excited audience
rushing back to the agency to work
energetically, but by a workforce
accepting the defined terrain. Here
culture, creating and being the terrain
for consciousness, is a mechanism for
control.
So is the identity of the occupation, one
may add.

These organizational identities are

constructed in a melting pot of one’s own and
imposed images. They are created in a never-
ending process of grinding, blending, and
forming the perceptions and demands received
from the others and simultaneously the views
offered to them for consideration. In this sense,
it may be more useful to speak of the ongoing
process of obtaining an identity rather than of
“having one” (Weick, 1969/79; Sveningsson
and Alvesson, 2003).

 Vol 7 Issue 7.1 2008 ISSN 1532-5555

22

This identity tension is intertwined with
the fundamental conflict of an individual with
an organization (and thus between an
employee and a manager, a personification of
the administrative power). Zygmunt Bauman
(1992/98: 98) even asserts that individuality is
inevitably the primary enemy for any
organization. To control its members, the
organization has to deprive them of their
uniqueness, bracket them, and impose an
identity as standardized as possible. This
process is even more common in knowledge-
intensive3 companies.

Such corporations typically rely heavily

on the normative/ideological control over their
employees (Kunda, 1992; Hochshild, 1997).
Although in manual labor the strict observation
of physical movements in Tayloristic manner
suffices to achieve satisfactory results (a
person is but a substitute for a machine), in the
case of knowledge-work it, by definition,
cannot be successful. Therefore, in this case,
the disciplinary power of the organization over
its employees goes beyond just the body to
rely on their internalizing the external rules
and, finally, on self-control (Foucault, 1977).
Consequently, personal surveillance is much
less common than the control of outcomes or
even just the performance (Ouchi and
Maguire, 1975; Meiksins and Watson, 1989).
Thus, the companies supplement the control of
bodies with the control of what happens in the
minds of the workers. Paradoxically, in this
sense, “blue collar” workers may have more
freedom of thought and more intact integrity
than “white collar” workers (Leidner, 1993).
Where behavior cannot be bracketed and
prescribed by procedure or direct supervision,
the self-definition and devotion of the worker
play crucial role. In fact, as Rosabeth Moss
Kanter writes (1977: 65):

3
 The strict definition of knowledge-intensive work is difficult, if

not nearly impossible, to identify. At the general level, it refers to
jobs requiring mostly intellectual skills of highly educated
employees. However, knowledge is a concept that is
unambiguously positive, yet difficult to measure. For example, it
is unclear how to decide whether a plumber has to know less
than a surgeon or not. Thus, it should be stressed that
knowledge intensiveness is a social construct (Alvesson, 2000;
Styhre and Sundgren, 2005), just like “professional” status
(Brante, 1988).

…the organization’s demands for a
diffuse commitment (…) is another way
to find concrete measures of trust,
loyalty, and performance in the face of
uncertainties

The meaning of managerial work shifts

accordingly, evolving from the traditional
industrially bureaucratic model, in which the
standardization of work process, planning,
structural design, control, and formalization are
most important (Mintzberg, 1983). As a result,
identity shaping, indoctrination, and the
creation of emotions become parts of
managers’ routines—or at least intentions
(Jackall, 1988; Kärreman and Alvesson, 2004).
Consequently, the process of the employees
themselves creating occupational identity and
the resistance to accepting managerial
bracketing of a given profession are utterly
important for understanding contemporary
organizations. As such, the purpose of this
paper is to present the alternative perceptions
of software engineers’ identities, as described
in open, unstructured qualitative interviews.

METHODOLOGY

In order to understand the
programmers’ other self-identity
manifestations, the researcher conducted a
series of open-ended, unstructured interviews,
lasting typically 40 to 50 minutes, in 3 Polish
and 2 American IT companies; 56 software
engineers and 4 managers participated in the
interviews. The interviews were conducted in a
free-flow manner, following the stories
described by the interviewees in an effort to
understand their perceptions of their own
occupations and work. As such, the structure
of the interviews was very much dependent on
the interviewees (Whyte, 1984). The studied
companies were of different sizes, but all
developed software for the corporate market
(banking, aviation, and customer service
solutions).

In the interviews, particular emphasis

was put on storytelling and the narrative
aspects of organizational life (Boje, 2001),

Jemielniak

23

which possibly influenced the methods of
research, even if not evident in the particular
outcomes of the study. In all cases, the
interviews were conducted on site, usually
during lunch breaks; all were recorded and
transcribed, with the interviewees’ consent.
Throughout the process of interviewing, a
working model for understanding the important
cognitive categories was being developed;
consequently, the later interviews were
increasingly grounded in the issues covered by
earlier ones. In three cases, the initial
interviews were followed by additional
meetings.

In this sense, the study was qualitative

and grounded-theory inspired (Glaser and
Strauss, 1957). It was a preliminary part of a
project subsequently conducted as an
anthropological field study (Czarniawska-
Joerges, 1992; Schwartzman; 1993). Thus, it
serves as an introductory part to an
organizational ethnography study (Kostera,
2007).

It should be also noted that the study

was performative, not ostensive (Latour,
1986). As such, it aimed to understand and
explain the point of view of the interviewed,
rather than offer an ultimate interpretation of
the analyzed problem “in reality.” Undoubtedly,
the presented opinions are only one of many
available perspectives and in no way more
valid than those of other organizational groups.
Still, learning how the software creators see
their work is very important for understanding
work in IT companies better or for explaining
the tension between programmers and
managers, which is quite typical for many
corporations in this industry (Kidder, 1981;
Kunda, 1992). After all, apart from “how it
really is” (which may be extremely difficult to
determine), it is also very important to realize
how a crucial group of people engaged in a
project understands and describes their own
tasks and identities.

PROGRAMMING AS ART

The image that emerged from the
interviews was particularly interesting in that

software writers quite often described their
work using the vocabulary and metaphors of
art, not of engineering. As developing software
is essentially based on writing and creativity is
a crucial factor in software preparation, such
an outcome is quite understandable. For
many, it is worth viewing programming in terms
of art (Knuth, 1974; Ditlea, 1984; Lyman, 1995;
Ullman, 1996; Humphrey, 2000; Cox et al.,
2001, 2004; Piñeiro, 2003; Bond, 2005). Many
scholars have also stated that organization
theory may benefit significantly from artistic
inspirations (e.g., Adorno, 1973; Guillet de
Monthoux and Czarniawska-Joerges, 1994;
Höpfl, 1995; Kostera, 1997; Hatch, Kostera
and Kozminski, 2005); indeed, in recent years
growing interest has emerged in studies of
aesthetical aspects of organizing (Strati, 1999;
Linstead and Höpfl; 2000; Carr and Hancock,
2002). However, many of the modern
organizations still ignore and neglect this way
of defining programmers’ selfhood.

In the case of software development,

the perception of programmers’ identity as
defined through art is especially interesting
because the view expressed by the
programmers themselves is quite often very
different from the common idea on what
software development is about, and,
consequently, from the prevailing metaphor
used for describing programming in
organizations. Therefore, the current paper
depicts this alternative view on programming in
the words of the informants4 in order to
demonstrate how software creation can be
perceived as art. The paper then exploits this
alternative metaphor and compares software
writing to art. Finally, it examines the reasons
for the tension between the widely accepted
identity of a programmer as an engineer and
the perception of the occupation as artistic in
the eyes of software creators themselves,
drawing upon the occupational identity
theory—introduced at the beginning of this
work—to show that the label of an engineer
successfully imposed on programmers helps

4
 This word is most unfortunate for describing people and may

carry a connotation of condescension. I use it merely to alternate
between terms.

 Vol 7 Issue 7.1 2008 ISSN 1532-5555

24

managers in sustaining their dominance and
control.

WHY ART VERSUS ENGINEERING?

 The use of the “programming as art”
metaphor in this paper is based on four major
ideas:

- programming is treated as an artistic
hobby by programming professionals
(engaging in an activity as both a hobby
and professionally is generally unusual,
but quite typical in artistic vocations);

- according to interviewees, artistic
creativity is crucial in their job;

- interviewees often compared
programming to art; and

- interviewees used aesthetical terms to
describe their work.

 “Art” in this article is understood similarly
as in the approach of Harold Osborne, who
claimed that “whatever among artifacts is
capable of arousing and sustaining aesthetic
experience in suitably prepared subjects we call
a work of art” (1981:3). In this sense,
programming is art whenever it evokes
aesthetical feelings (and requires creativity, at
least in some of its aspects). Such a view allows
for the exploitation of the metaphor more
effectively in occupations traditionally not
perceived as artistic than the classical definition
by Dickie (1974), which states that art is
whatever the artistic world labels as such. For
other approaches to this issues, see for example
Dean (2003).

RESULTS

 The first aspect related to programming
that was identified as unusual and made the
perception of software creation in terms of art
more viable was hobbyist programming. Most of
the informants complained that they spend a lot
of time at work. More surprisingly, a significant
number of them did some programming at home
too. The following excerpt from one interview is
particularly representative (Minicorp4):

 [Q:] Do you ever think about problems
from work once you go home?
 [A:] Well, it depends. It all depends on

what I do. I prefer to do some hobbyist
stuff, so I write at home quite often.

 [Q:] Are these programs that you use
back at work or something else?
 [A:] No. These are totally different
programs, written just for fun.

[Q:] So you mean you work your usual
hours in the company and then go
home and additionally write other
programs?
[A:] Well, I usually spend a couple of
hours per week, which is why such
homemade projects take a couple of
months…These are not important
things.
[Q:] So why do you do them?
[A:] You know, many people have
similar side projects…Especially if you
have a look at how the open source
environment is developing. These
people have to write their programs at
some time…I myself do so
occasionally, small things. I don’t think
these programmers spend their
working time at this. Well, some of
them are students…But most spend
their time at work, and once they get
home, they develop their own stuff. At
least, that’s what I do.
[Q:] But why do you do that?
[A:] It is a hobby. Some people read
books, some like to write poetry, and
some like to write programs.

Although the interlocutor described his work
as “unimportant,” he also said that he
regularly spends time on it away from the
office. Interestingly, he also compared
programming to poetry.

 Many other interviewees made similar
comments, emphasizing the additional fun
they had from such work, which was
unattainable in their regular job (Wodan6):

[Q:] Do you work at home?
[A:] At home? No, definitely not. I

mean, I do some hobbyist

Jemielniak

25

programming, but it is something
totally else. (…) I move away
from commercial and professional
programming, and at home I can
write, hmm, let’s say a script that
generates nice color pictures.
And everybody knows you can’t
do this at work, nobody really
needs it, but such amateur
projects give you a sense of
satisfaction, that you are doing
something interesting.

According to this informant, he was developing
programs for the mere satisfaction of creation
and the fun of doing something interesting. He
also made a clear distinction between what he
did at the company and at home; the second
was described as entertaining (as we may
assume, in opposition to the job). This division,
to some extent, may personalize the two iconic
images of an engineer (patiently performing the
mundane tasks in a cubicle) and an artist
(spending hours, captivated by something
nobody really needs, but giving satisfaction).
However, only the former is associated with
occupational identity and regarded as work. The
same view was expressed by many other
interlocutors and is in clear accord with art(ist)
studies. For example, Howard Singerman
(1999) postulates that the role of an artist is in
direct conflict with predictability and
standardization, especially in organizations
expecting uniformity.

 It may be worth noting here that the
main difference between a “geek”
(programmer) and a “normal” person,
according to some of the programmers
themselves, relies mainly on a passion for
learning, an internal drive to understand
things, and creativity. As one of the
disputants at slashdot.org5, the cult portal of
software people, said:

There will always be exceptional
people in any field—Donald Knuth is
one of the great computing minds of
our time, but there are plenty of others
as well. The truth of the matter is that

5
 http://slashdot.org/comments.pl?sid=92986&cid=7994621

the people who have a passion for
learning and exploring computers will
always be different, because while
normal people are content to sit around
and type in Microsoft Word, these
people actually want to understand
what is happening behind the screen
and why exactly these things happen
the way that they do. There’s nothing
wrong with the content people, but
because they’re content, their time and
energy will be spent elsewhere in other
passions.

Such an attitude was surprisingly widespread
among the interviewees, most of whom
completed programming projects in addition
to their regular appointments. They also
emphasized the role of creativity in writing
software.
 In fact, creativity was a treat most
commonly referred to when describing the
characteristics of a good programmer
(Wodan7):

 [Q:] What distinguishes programming

from other occupations?
[A:] Well, many things, that’s for sure…I
have always thought that it is quite
creative. And you can see the results of
your creativity pretty fast. A good
field…Well, there are software
engineers who shuffle tons of code
over the Internet, change one thing, get
to know one program. And this
supposedly proves they’re creative. But
there are also really talented people
who write such things…masterpieces.

This interlocutor strongly emphasized the role
of creativity in software creation, clearly stating
that skillful programming requires talent and
that excellent programs are “masterpieces.”

Other interviewees also often described
programs as artistic creations. As stated
earlier, a number of them explicitly compared
software to poetry (Sand9):

 [Q:] What would you compare

programming to?

 Vol 7 Issue 7.1 2008 ISSN 1532-5555

26

[A:] I’ll put it this way. Once I spoke to a
mathematician. I was still back in high
school, and we shared views on poetry
and on new algorithms in math. Then
he said that he personally didn’t like
poetry, but a new algorithm is
something of this sort…
[Q:] Do you share this view?
[A:] Yes.
[Q:] Why?
[A:] Well, there are many similarities,
for example inspiration. I think that
most programming work doesn’t require
inspiration. It is mostly mundane, but
you need this inspiration for some
fragments, [some] pearls.

 A program itself is a piece of writing in
a particular language; it should not be
surprising then that—for those whose
command of the language is highest—some
work is appealing for the beauty of its
language, not just its functionality (Bond,
2005). Indeed, the majority of interviewees
referred to aesthetic, non-functional criteria
for program evaluation (Optirec3):

[Q:] Could you describe the criteria for
software evaluation?

[A:] Well, there is an element of
functionality, and some
component of art…

[Q:] What do you mean by
“component of art”?

[A:] Well, it is quite unobvious…It is
something that can be
appreciated only by people skilled
in the same art. It’s like…the
whole program looks nice, but a
programmer can tell it only if he
sees it from the inside.

[Q:] Does the component of art matter
then?

[A:] Well, in business practice it may
in some particular situations, but
normally efficiency is more
important than being a piece of
art. (…) The fact that
programming is art for me is that
in some cases it gives you pure
pleasure.

[Q:] When does that happen?
[A:] Well, mostly when you program

something that interests you, not
something that is just a task to be
finished. When you have some
given tasks, you have to
compromise. When you prepare a
piece of art, it usually is not
compromised.

In this example, the interviewee directly

described programming as art. He further
added that the criteria for understanding and
evaluating it depend on the competence of the
evaluator (quite a typical approach in “regular”
art as well).

According to many of the informants,
the beauty of the code does not have much to
do with its functionality (Sand14):

[Q:] Do you have any paragons in

programming?
[A:] Meaning a person or a group?
Well, Russians create a beautiful
code—at least they did some time ago;
we were programming in quantities,
they went for the quality. A person
creates beautiful code when he wants
to show “I can do it, too!” So he writes a
nice program, distributes it as an open
source project on the Internet, and
people say “hey, that’s a smart guy to
do something like that.”

Clearly, the aesthetics of the code do matter.

Some programmers also made the

point that, even while programming
commercially, they add functions that were not
required by the client just because they
considered them “interesting” or “potentially
useful” just for the pleasure of “creating a nice
function” (Wodan10):

 [Q:] What characterizes good software?

[A:] Well, it depends upon the
programmer. (...) There are people who
can write good code but at the same
time they can do it quickly—that doesn’t
mean they do it wrong, they can just

Jemielniak

27

restrict themselves. Because, you
know, as in any occupation, you have
temptations. I wrote a nice function
here, maybe I’ll develop it and use it at
some later time....

Performing just for the sake of

elegance fits well into the role of artist,
although within the identity of an engineer this
could be considered unprofessional. The same
approach was described by Joe Schofield
(2003: 83-84):

Some software engineers may dabble
outside the scope of the project if it
interests them. “Out-of-the-box”
software engineers are sometimes the
source of creeping requirements and
technology churn. I once observed a
manager accuse a team of expanding
the scope of the project without the
customer’s input. The team, he
suggested, was improvising by adding
business rules to the process model.
Indeed, the team had been reporting
progress, just not the progress
expected under the project plan.

 A number of the informants described
metaphysical, inspiration-like experiences
they had while programming (Minicorp3):

[Q:] Does programming involve any
emotions?
[A:] Well, there are these
moments…moments of nearly
mystical enlightenment. I’m
wondering to what extent they are a
result of—I don’t know—brain
chemistry or just a prolonged sensor
deprivation. But there are really such
moments, when you see…I had a
couple of these moments, even more
often… Well, maybe it was influenced
by how long I programmed or how
deprived of stimuli I was or how much
coffee I drank, but I enter this trance
[and] the code bursts from my fingers.
Fountains of code burst from my
fingers, and everything works
straightaway. It is difficult to achieve

in normal office work, when
somebody comes in and out and
disturbs you and new demands
appear…

Indeed, six interviewees explicitly presented
the view that programming is art (Sand7):

[Q:] What is programming most like, if
you were to categorize it?
[A:] Well, it is like…essentially it is
mostly like art. We are creating
software, and programming
languages are sort of tools.

 In this light, it is by no means
surprising that the interviewees used artistic
vocabulary and comparisons so often.
Numerous examples of similar perceptions
exist in literature. As early as 1974, Donald
Knuth wrote an article with the symptomatic
title “Computer programming as an art” in
which he supported the exact same view:
Programming is an artistic endeavor. Ullman,
(1996) explains why:

People imagine that programming is
logical, a process like fixing a clock.
Nothing could be further from the truth.
Programming is more like an illness, a
fever, an obsession. It’s like those
dreams in which you have an exam but
you remember you haven’t attended
the course. It’s like riding a train and
never being able to get off.

Peter Case and Erik Piñeiro

demonstrated (2006) that programmers’
communities commonly use aesthetical criteria
in their approaches to software. In fact,
Piñeiro’s (2003) most interesting book shows
how programmers rely to huge extent on
aesthetical evaluation of their creations. In
Peter Lyman’s study (1995) programmers who
were also musicians considered playing an
instrument as a metaphor of programming. A
similar view is shared by Steve Ditlea (1984):

Software encourages alternative
thought processes: among the most
successful of today’s programmers

 Vol 7 Issue 7.1 2008 ISSN 1532-5555

28

are musicians, night owls and free
spirits. Imagination is at a premium.
The soft culture beckons. We are
entering an era of techno-romantics,
children of the information revolution
who are equally comfortable with the
abstractions of technology and the
emotions of the heart. (…) It may
seem a contradiction to talk about
techno-romantics: how can the
precision of computer technology
coexist with the whims of the human
heart? Yet the entire history of
computing is filled with pioneer
techno-romantics, equally comfortable
with the most fundamental secrets of
logic and the universe of emotion.

According to Peter McBreen (2002), the

standardization of software and the act of
treating it as any other engineering creation
lead to serious misconceptions of
programming. He believes that programming
can be taught mainly by collaborating with
“masters” as it is strongly based on a tacit
knowledge. In this respect, programming is
closer to craftsmanship or art than to
engineering. Some authors even take it further
(Weber, 2004: 59):

The essence of software design, like
writing of poetry, is a creative process.
The role of technology and organization
is to liberate that creativity to the
greatest extent possible and to facilitate
its translation into working code.
Neither new technology nor a “better”
division of labor can replace the
creative essence that drives the project.

All things considered, it is clear that, for

some—if not the majority—of the
programmers, software writing is defined at
least as much within the concept of art as
within the idea of engineering. For
programmers themselves, it is a useful
metaphor, present in their regular discourse.
Although it is not the intention of this paper to
prove the engineering metaphor to be less
valuable than that of art as both have pros and
cons, clearly one of the ways to identify

programming is much less frequently used in
official organizational language—despite its
usefulness for the programmers themselves.

Yet, surprisingly, in all studied
companies, the programmers’ posts were
described as engineering. Moreover, during
observations conducted on site, managers
often used the metaphor of an engineer to
address programmers. For example, the
Wodan manager, when introducing the
researcher to the company, stated:

Our company has one of the finest
collections of engineers in the country.
If we can’t develop a piece of software
you want, the chances are, nobody
can.

In addition to the typical managerial

chatter and boasting, he referred to his
subordinates as engineers. In two cases,
software development teams were also called
“software engineers” in organizational
documents. Furthermore, most of the
interviewees had the word engineer in one
form or another on their business cards.

Engineering was presented as something
positive (Sandcorp manager):

What we do is more problem solving
than just software development. We try
to address the customer’s needs even
beyond what they initially think. Also,
we always try to make our product as
structured and logically created as
possible. We do really good
engineering, not a patchwork here and
there.

On one occasion a manager explicitly

contrasted a creative and engineering
approach to programming (MinicorpM):

You know, I don’t really want to have
people who go into a creative trance
and come out with a piece of excellent
code nobody else can understand. It
may be good by itself, but that’s not the
point. We need teamwork, and a good
software engineer is somebody who

Jemielniak

29

not only can write well, you know, but
also write it in such a way that others
can pick it up in the meantime, relate to
it, know what’s going on. I’ve seen a
couple of “creative” [quotation marks
gestured] guys who really didn’t do that
well on a team. It just doesn’t work like
that.

Thus, the managerial and

organizational approach is quite clear.
Programmers are perceived and referred to as
engineers; they are expected to believe they
are engineers. Not only is their role at stake
(the expectation toward behavior), but also
their imposed identity (the expectation toward
self-perception). This discrepancy is interesting
and worth considering.

CONCLUSIONS: CONTEMPORARY AVANT-
GARDE

The evaluation of an employee’s work
becomes more dependent on his/her
intensions and loyalty than just the result. In
programming, where precise planning and an
estimation of tasks’ difficulty level are still
developing, this increasing dependence is
particularly visible. The positive evaluation of
an employee is often highly correlated to time
spent at work and other manifestations of
dedication, such as coming back from vacation
in the case of a crisis or putting family life
second (Perlow, 1997, 2004; Cooper, 2000;
Jemielniak, 2007). Such a correlation is one of
the reasons for the advancing bifurcation of
working time (Jacobs and Gerson, 2001) as
employees increasingly face the choice of
making a symbolical sacrifice and working very
long hours or not working at all—at best
working part-time or for hourly wages.
Although such a situation agrees with the
image of an educated engineer, it does not
really fit the identity of an artistic genius.
Perhaps this is one of the reasons why
organizations and managers find it much more
convenient to see programmers as engineers,
even though the programmers themselves are
sometimes having difficult time being defined
as such (Minicorp7):

Some of them [managers] don’t get it.
You can write something average, or
you can write a really beautiful code.
And this is something really great,
when you can do this. But some
managers think like this: here is the
specification, do what is required as
fast as you can, and that’s it. They say
“you’re an engineer, so just go and do
some engineering”. It doesn’t work like
that.

In addition, an engineer (as portrayed

in the iconic Dilbert comic figure) is definitely
much more prone to manipulation than the
free-spirited, independent artist. As the
ideological control in non-ideological
organizations grows in popularity
(Czarniawska, 1988), one of the crucial
managerial functions is enacting employees’
identity, allowing for easier control. By calling
software creators engineers, organizations
justify their inter-changeability and imply
standardization of this occupation. Yet, as
evident from the presented research, this
process is not occurring without resistance;
many programmers, when denied the
possibility to be artists at work, enter this role
after hours.

Heather Höpfl (1995) compares two

views on the world of organizations,
distinguishing them as rhetoric (persuasion,
the method of convincing people to bend to the
organizational expectations) and poetics (often
ignored by managers, relying on creativity,
being a spontaneous reaction of organizational
actors). Rhetoric is the “propaganda,” the way
in which the identity label is attributed, while
poetics is the reaction, the recoil of the labeled.
This polyphony, evident in all organizations, is
what managers tend to suppress (Boje, 1995).

This process of assigning names plays

a major role in applying social control. For
example, the seemingly indifferent change in
names from “drunkards” to “alcoholics”
resulted in redefining the problem of drinking
from a moral issue to a medical issue (Brown,
1988). Something as simple as chefs’
instructions convey powerful roles and may

 Vol 7 Issue 7.1 2008 ISSN 1532-5555

30

help in reinforcing the gender gap (Silva,
2000). Similarly, the name by which a given
occupation is described has a significant
impact on the employee as it both defines the
terrain in a way in which the management finds
it convenient and exploits the right to name
things and people, thereby reasserting
authority.

In this sense, the organizational

rhetoric of programmers’ identity has to
reinforce the official image (“engineers”) and
refute the poetic alternative view on
programming. The more challenging the
alternative metaphor for programming is, the
more it has to be ignored. Thus, programmers
perform art, but can only enjoy it to the full
capacity at home, as a hobby.

Keeping all possible dangers of

overexploiting a metaphor in mind, one may
draw another parallel. This situation is quite
reminiscent of the futurist artistic movement in
the beginning of the 20th century. Jochen
Schulte-Sasse (1984), writing about the
modernist movement in art, recalls Adorno’s
thought—namely, bourgeoisie aims at
unification and the elimination of individualism.
An individual is free, but denied the right (or
the possibility) to be original. Only the art—
particularly the avant-garde/bohemia—can
resist this tendency6.

Indeed, the avant-garde movement

relied to a large extent on questioning the
social norm, including the criteria of art. It
promoted individualism in opposition to the
mass society. For example, Renato Poggioli
(1968) writes that the art of avant-garde relies
on negation, refuting the bourgeois society’s
norms. Surely, this is a limited revolt in which

6
 Important differences exist between bohemian and avant-

garde movements (the latter contested bohemians for being
civilized rebels, protesting mainly through dress, presence in
elite circles, and the lack of social program, in order to dilute the
distinction between the recipient and the creator of art as well as
art and everyday life; see Bürger, 1974/1984). However, in this
extensive comparison of programmers to both of these
movements, a common theme emerges: negative perception of
the bourgeoisie lifestyle. This perception is used as a metaphor
to accentuate certain features of the programmers’ community,
not to claim they are “just like” bohemians/avant-gardists.

anarchy remains under control (Poggioli, 1968:
107):

…in an epoch or culture like ours the
artist finds himself “on strike (en greve)
against society.” But, in order to strike,
one has to be employed

Moreover, according to Terry Eagleton
(2003: 39):

Because subjects like literature and art
history have no obvious material payoff,
they tend to attract those who look
askance at capitalist notions of utility.
The idea of doing something purely for
the delight of it has always rattled the
grey-bearded guardians of the state.
Sheer pointlessness is a deeply
subversive affair.

Perhaps this is why programmers write

their own software at home.

From the point of profitability,

programming is a gesture of protest as well.
Although the programmers’ rebellion is tame,
they can be appreciated as real artists outside
of work. To some extent, they exclude
themselves from the system, like the original
bladerunners7. Therefore, the rhetoric of
calling programmers “engineers” and imposing
a professional identity on them serves yet
another purpose: allowing managers to try to
“civilize” the rebels with whom they have to
cope.

The application of artistic metaphor to

programming has some explanatory power
even on the very shallow level of dress codes.
Programmers are considered the worst
dressed occupation of all industries (Hearn,
2005). However, casual dress—just like
bohemian negligence—could also be an act of
denouncing the form (in this case, the
managerial uniform), resistance toward the

7
 Blade Runner is a cult science fiction movie by Ridley Scott

that is favored by many “geeks,” but also serves as a symbol
used by Deleuze and Guattari (1986) to describe a person partly
outside the system but still able to be on good terms with all
parts of the conflict by providing them all with arms. This role
agrees with the identity of unusual nomadic freedom (Jemielniak
and Jemielniak, 1999).

Jemielniak

31

standardization, and bracketing (Kidder, 1981;
Kawasaki, 1990).

In this sense, using the notion of

engineering in the context of software
engineers may in fact be a way of reinforcing
managerial dominance. Philip Kraft (1977)
demonstrates that, in some cases, managers
use the engineering professionalization ethos
to impose their own created standards of work
on the programmers and increase reign over
them. Denying the artistic role of the
programmers and identifying them with
standard-educated engineers further makes
them believe that they are more easily
replaceable. Leslie Perlow (1998) explains
how managerial expectations of programmers
and appeals to their professional code serve
as methods of exploiting the workers and
forcing them to work more. Indeed, as Mats
Alvesson (2000) points out, occupational
identity in the case of programmers may
impose temporal expectations of staying
longer hours. As such, the identity of an
engineer really does not allow for institutional
and structural independence, but it helps—
among other things—keep the wages lower.
For example, in Kraft’s study, managers were
able to persuade their subordinates, at least
officially, that comparing salaries is
“unprofessional.” This also allows for
distancing an artist from his/her work as
writings in programming language are rarely
signed. In other words, the importance of the
individual is belittled. Identifying programming
as a standardized task also helps place the
responsibility for any schedule slips8 on
programmers. Artistic identity is ignored by the
management as, next to creativity and talent, it
implicates unpredictability and high
individualism as well. The displays of the
artistic “hacker ethic”—even if part of the
occupational face-work ritual (Goffman,
1967)—have to be, sticking to Goffman’s
vocabulary (1963), stigmatized as not fitting
the organizational expectations.

8
 Falling behind the schedule is extremely widespread in

software creation. Only 26 percent of software projects are
delivered on time and within budget (Smith and Keil, 2003).

All things considered, it is quite
understandable why programmers’ identity is
torn between two—if not more—images. As
uniformity and dedication to the organization
go first, programmers’ perception of their job in
terms of art is questioned and suppressed by
the view of engineering. Compared to other
occupations, programmers oppose this
bracketing quite fiercely; they can be truly
labeled as contemporary avant-garde. Still,
they are continually challenged with a powerful
metaphor of engineers. Although such a view
of programming carries many misleading
connotations and leads to various
misconceptions in business life as well, it has
one undisputable advantage in that it supports
managerial domination by associating
programming with a standardized, teachable,
and predictable activity that is easily planned.
In other words, occupational identity serves as
a tool for ideological control. The
internalization of engineers’ identity by the
programmers simply makes managing them
easier—even if this is not how they truly
perceive their work.

REFERENCES

Adorno, Theodor W. (1973) Philosophy of
Modern Music (trans. W. Blomster).
New York: Seabury.

Alvesson, Mats (2000) Social Identity and the

Problem of Loyalty in Knowledge-
Intensive Companies, Journal of
Management Studies, 37(8), 1101-
1223

Ashforth, Blake E., and Humphrey, Ronald H.

(1995) Labeling processes in the
organization: Constructing the
individual. In L. L. Cummings & B. M.
Staw (eds.) Research in organizational
behavior, vol. 17, pp. 413-461.
Greenwich, CT: JAI Press.

Ashforth, Blake E., and Kreiner, Glen E. (1999)

"How Can You Do It?": Dirty Work and
the Challenge of Constructing a
Positive Identity, The Academy of

 Vol 7 Issue 7.1 2008 ISSN 1532-5555

32

Management Review, vol. 24(3), pp.
413-434.

Bauman, Zygmunt (1992/98) Smierc i

niesmiertelnosc – o wielosci strategii
zycia (Mortality, Immortality and Other
Life Strategies), Warszawa: PWN

Bauman, Zygmunt (1998) Liquid modernity,

Cambridge: Polity Press

Bauman, Zygmunt (2007) Liquid times: living in

an age of uncertainty, Cambridge:
Polity Press

Beck, Ulrich (2000) The brave new world of

work, Cambridge - Malden, Mass.:
Polity Press.

Beizer, Boris (2000) ‘Software is different’ in:

Annals of Software Engineering 10,
293-310

Boje, David M. (1995) Stories of the

storytelling organization: A postmodern
analysis of Disney as "Tamara-land."
Academy of Management Journal
38(4): 997-1035.

Boje, David M. (2001) Narrative Methods for

Organizational and Communication
Research, London: Sage.

Boje, David M. and Winsor, Robert D. (1993)

The Resurrection of Taylorism: Total
Quality Management’s Hidden Agenda,
Journal of Organizational Change
Management, no. 6, 57-70

Bond, Gregory W. (2005) ‘Software as art’ in:

Communications of the ACM, vol. 48
no. 8, 118-124

Brante, Thomas (1988) Sociological

Approaches to the Professions, Acta
Sociologica 31(2), 119-142

Brookes, Frederick P. (1995) The Mythical

Man-Month, Reading, Massachusetts:
Addison- Wesley

Brown, Richard H. (ed.) (1998) Toward a
Democratic Science: Scientific
Narration and Civic Communication,
Yale: Yale University Press

Bryant, Anthony (2000) Metaphor, myth and

mimicry: The bases of software
engineering in: Annals of Software
Engineering 10, 273-292

Bürger, Peter (1974/1984) Theory of the

Avant-Garde, Minneapolis: University of
Minnesota Press

Carr, Adrian and Hancock, Philip (2002) Art

and aesthetics at work: An overview, in
Tamara: Journal of Critical Postmodern
Organization Science, 2(1) 1-7
(introduction to the special issue on
organizational aesthetics)

Case, Peter and Piñeiro, Erik (2006)

Aesthetics, performativity and
resistance in the narratives of a
computer programming community,
Human Relations, vol. 59(6), pp. 753-
782

Cooper, Marianne (2000) Being the “Go-To

Guy”: Fatherhood, Masculinity, and the
Organization of Work in Silicon Valley,
Qualitative Sociology 23(4), 379-405

Cox, Geoff and Krysa, Joanna (2003) Art as

Engineering: Techno-Art Collectives
and Social Computer Change, Art
Inquiry, Lodzkie Towarzystwo
Naukowe, Lodz, available at:
http://www.anti-
thesis.net/texts/engineering.pdf

Cox, Geoff, Ward, Adrian and McLean,

Alexander (2001) The Aesthetics of
Generative Code, in E. Thacker (ed.)
Hard_Code: narrating the network
society, Alt-X Digital Publishing

Cox, Geoff, Ward, Adrian and McLean,

Alexander (2004) Coding Praxis:
reconsidering the aesthetics of code,
paper prepared for the Read_Me

Jemielniak

33

conference, Aaahus, available at
http://www.anti-
thesis.net/texts/praxis.pdf

Czarniawska-Joerges, B. (1988) Ideological

control in nonideological organizations,
New York: Praeger

Czarniawska-Joerges, Barbara (1992)

Exploring complex organizations: A
cultural perspective, SAGE: Newbury
Park – London – New Delhi

Czarniawska-Joerges, Barbara and Pierre

Guillet de Monthoux (1994) Good
novels, better management: Reading
organizational realities. Harwood
Academic Publishers

Dean, Jeffrey T. (2003) The Nature of

Concepts and the Definition of Art, The
Journal of Aesthetics and Art Criticism,
vol. 61(1), pp. 29-35.

Deleuze, Gilles and Guattari, Felix (1986)

Nomadology: The War Machine (Traite
de nomadologie: La machine de
guerre), New York: Semiotext(e),

Dickie, George (1974) Art and the Aesthetic.

An Institutional Analysis, Ithaca: Cornell
University Press

Ditlea, Steve and Lunch Group (1984)

‘Beautiful!’ in: Digital Deli – The
Comprehensive, User-Lovable Menu of
Lore, Culture, Lifestyles and Fancy,
New York: Workman Publishing
Company, available also at
http://www.atariarchives.org/deli/soft.ph
p

Eagleton, Terry (2003) After Theory, New

York: Basic Books

Foucault, Michel (1977) Discipline and Punish.

The Birth of the Prison, London:
Penguin Books

Foucault, Michel (1982) The subject and

power, in: H. Dryfus and P. Rabinow,

(Eds.) Michel Foucault: Beyond
Structuralism and Hermeneutics.
London: Harvester Wheatsheaf.

Glaser, Barney and Strauss, Anselm (1957)

Discovery of Grounded Theory:
Strategies for Qualitative Research,
Chicago: Aldine

Goffman, Erving (1963) Stigma, Englewood

Cliffs: Prentice-Hall

Goffman, Erving (1967) Interaction Ritual:

Essays on Face-to-Face Behavior, New
York: Random House, Inc.

Grant, David; Keenoy, Tom and Oswick, Cliff

(eds.) (1998) Discourse and
Organization, London – Thousand
Oaks – New Delhi: SAGE

Guillet de Monthoux, Pierre and Czarniawska-

Joerges, Barbara (eds.) (1994) Good
Novels, better management-reading
organizational realities in fiction, Chur:
Harwood

Hatch, Mary Jo; Kostera, Monika and

Kozminski, Andrzej K. (2005) The three
faces of leadership: Manager, artist,
priest. Blackwell Publishing

Hearn, Louisa (2005) IT workers dubbed 'worst

dressed', The Sydney Morning Herald,
17 Nov. 2005,
http://www.smh.com.au/articles/2005/1
1/17/1132016909640.html

Hochshild, Arlie R. (1997) The time bind:

When work becomes home and home
becomes work, New York: Metropolitan

Höpfl, Heather (1995) Organizational rhetoric

and the threat of ambivalence, Studies in
Cultures, Organizations and Societies,
1/2, 175-187

Humphrey, Watts S. (2000) Software – a

performing science?, Annals of
Software Engineering 10, 261-271

 Vol 7 Issue 7.1 2008 ISSN 1532-5555

34

Jackall, Robert (1988) Moral Mazes: The
World of Corporate Managers, New
York: Oxford University Press

Jacobs, Jerry A. and Gerson, Kathleen (2001)

Overworked Individuals or Overworked
Families?, Work and Occupations vol.
28(1), pp. 40-63

James, Geoffrey (1986) The Tao of

Programming, Infobooks, Santa Monica

Jemielniak, Dariusz (2007) Managers as lazy,
stupid careerists? Contestation and
stereotypes among software engineers,
Journal of Organizational Change
Management, vol. 20(4), pp. 491-508

Jemielniak, Dariusz and Jemielniak, Joanna

(1999) Identity in a Time of Change,
Knowledge Transfer, 2(1), 1-11

Kanter, Rosabeth M. (1977) Men and Women

of the Corporation, New York: Basic
Books

Kawasaki, Guy (1990) The Macintosh Way,

Glenview: Foresman&Co.

Kärreman, Dan and Alvesson, Mats (2004)

Cages in Tandem: Management
Control, Social Identity, and
Identification in a Knowledge-Intensive
Firm, Organization, vol. 11(1), pp. 149-
175

Kidder, Tracy (1981) The Soul of A New

Machine, New York: Avon Books

Knights, David and Willmott, Hugh (1999)

Management Lives: Power and Identity
in Work Organisations, London, Sage

Knuth, Donald E. (1974) Computer

programming as an art,
Communications of the ACM, vol.
17(12), pp. 667-673

Kociatkiewicz, Jerzy and Kostera, Monika
(2003) Shadows of Silence, Ephemera
vol. 4/3, pp. 305-313

Kostera, Monika (1997) The Kitsch-

Organization, Studies in Cultures,
Organizations and Societies 3, 163-177

Kostera, Monika (2007) Organizational

ethnography. Methods and inspirations.
Lund: Studentlitteratur

Kraft, Philip (1977) Programmers and

Managers. The Routinization of
Computer Programming in the United
States, New York: Springer Verlag

Kunda, Gideon (1992) Engineering Culture:

Control and Commitment in a High-
Tech Corporation, Philadelphia: Temple
University Press

Latour, Bruno (1986) The powers of

association, in: J. Law (ed.) Power,
Action and Belief - A New Sociology of
Knowledge?, London, Boston, Henley:
Routledge&Kegan Paul

Latusek, Dominika and Jemielniak, Dariusz

(2007) (Dis)trust in Software Projects: A
Thrice Told Tale. On Dynamic
Relationships between Software
Engineers, IT Project Managers, and
Customers, The International Journal of
Technology, Knowledge and Society,
vol. 3(1), pp. 117-125

Leidner, Robin (1993) Fast food, fast talk:

Service work and the routinization of
everyday life, University of California
Press: Berkeley-Los Angeles-London

Lewerentz, Klaus and Rust, Heinrich (2000)

Are software engineers true
engineers?, Annals of Software
Engineering vol. 10, pp. 311-328

Linstead, Stephen and Höpfl, Heather (eds.)

(2000) The aesthetics of organization,
London, SAGE

Jemielniak

35

Lyman, Peter (1995) Computing as
Performance Art, Edurom Review,
Jul/Aug, vol. 30 issue 4

McBreen, Pete (2002) Software

Craftsmanship: The New Imperative,
Boston-San Francisco-New York et al.:
Addison-Wesley

McDermid, John A. (ed.) (1991), The Software

Engineer’s Reference Book,
Butterworth Heinemann, London

Meiksins, Peter F. and Watson, James M.

(1989) Professional autonomy and
organizational constraint: The case of
engineers, Sociological Quarterly,
Winter, vol. 30 issue 4, pp: 561-585

Mintzberg, Henry (1983) Structures in Fives:

Designing Effective Organizations,
Englewood Cliffs NJ: Prentice Hall

Mintzberg, Henry (1998) Covert leadership: on

managing professionals. Knowledge
workers respond to inspiration, not
supervision, Harvard Business Review,
Nov-Dec, 140-147

Morgan, Gareth (1983) More on Metaphor:

Why We Cannot Control Tropes in
Administrative Science, Administrative
Science Quarterly no. 28, 601-607

Morgan, Gareth (1986/1997) Obrazy

organizacji (Images of organization),
Warszawa, PWN

Ouchi, William G. and Maguire, Mary Ann

(1975) Organizational control: Two
functions, Administrative Science
Quarterly, no. 20, pp: 559-569

Perlow, Leslie A. (1997) Finding Time. How

Corporations, Individuals, and Families
Can Benefit from New Work Practices,
Ithaca-London: ILR Press

Perlow, Leslie A. (1998) Boundary Control:

The Social Ordering of Work and
Family Time in a High-tech

Corporation, Administrative Science
Quarterly 43, 328-357

Perlow, Leslie A. (2004) When you Say Yes

But Mean No, New York: Crown
Business

Piñeiro, Erik (2003) The Aesthetics of Code.

On excellence in instrumental action,
Ph.D. dissertation available at
http://www.lib.kth.se/Fulltext/pineiro031
128.pdf

Poggioli, Renato (1968) The Theory of the

Avant-Garde, Cambridge, Harvard
University Press

Pressman, Roger S. (1992), Software

Engineering: A Practitioner’s Approach,
3rd edition, London, McGraw Hill

Rosen, Michael (1985/91) Breakfast at Spiro’s:

Dramaturgy and Dominance, in Frost,
P. J., Moore, L. F., Louis, M. R.,
Lundberg, C. C. & Martin, J. (Eds.)
Reframing Organizational Culture,
ewbury Park - London - New Delphi:
SAGE.

Schofield, Joe (2003) Observations from the

ant hill: what ants and software
engineers have in common, Information
Systems Management, 20(1), 82-85

Schulte-Sasse, Jochen (1984) Foreword:

Theory of Modernism versus Theory of
the Avant-Garde, in: Bürger, P.
(1974/1984) Theory of the Avant-
Garde, Minneapolis: University of
Minnesota Press

Schwartzman, Helen (1993) Ethnography in

organizations, Sage: Newbury Park –
London – New Delhi

Shenhav, Yehouda (1999) Manufacturing

Rationality: The Engineering
Foundations of the Managerial
Revolution, Oxford: Oxford University
Press

 Vol 7 Issue 7.1 2008 ISSN 1532-5555

36

Silva, Elizabeth B. (2000) The cook, the cooker
and the gendering of the kitchen, The
Sociological Review, vol. 48, pp. 612-
628

Singerman, Howard (1999) Art Subjects:

Making Artists in the American
University, University of California
Press: Berkeley-Los Angeles-London

Smith, H. Jeff and Keil, Mark (2003) The

reluctance to report bad news on
troubled software projects: a theoretical
model, Information Systems Journal
13(1), 69-96

Strati, Antonio (1999) Organization and

aesthetics, London: SAGE

Styhre, Alexander and Sundgren, Mats (2005)

Managing Creativity in Organizations.
Critique and Practices, New York:
Palgrave Macmillan

Sveningsson, Stefan and Alvesson, Mats

(2003) Managing Managerial Identities:
Organizational Fragmentation,
Discourse and Identity Struggle,
Human Relations, vol. 56(10), pp.
1163-1193

Osborne, Harold (1981) "What Is a Work of
Art," The British Journal of Aesthetics,
vol. 21(1) pp. 3-11

Ouchi, William G. and Maguire, Mary A. (1975)

Organizational control: Two functions,
Administrative Science Quarterly, no.
20, pp: 559-569

Ullman, Ellen (1996) Out of Time: Reflections

on the Programming Life, Educom
Review vol. 31, (4)

Weber, Steven (2004) The Success of Open

Source, Cambridge: Harvard University
Press.

Weick, Karl E. (1969/79) The Social

Psychology of Organizing, Reading,
Massachusetts: Addison-Wesley

Westenholz, Ann (2006) Identity Work and

Meaning Arena: Beyond
Actor/Structure and Micro/Macro
Distinctions in an Empirical Analysis of
IT Workers, American Behavioral
Scientist, vol. 49(7), pp. 1015-1029

Whyte, William F. (1984) Learning from the

field: a guide from experience, Beverly
Hills, Sage Publications.

ABOUT THE AUTHOR:

Dariusz Jemielniak, Ph.D. is assistant professor of management at Kozminski Business
School (Poland). He was a visiting scholar at Cornell University (2004-2005), Harvard University
(2007), University of California Berkeley (2008). He recently co-edited a book on "Management
Practices in High-Tech Environments" (2008), and a forthcoming "Handbook of Research on
Knowledge-Intensive Organizations". His research focuses on knowledge-intensive workplace
and professions, which he analyzes by the use of qualitative methods.

