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1. Introduction
One of the main empirical properties of financial time-series is time-varying 

conditional volatility. As long as volatility remains the fundamental risk measure 
both in modern portfolio theory and risk management, there is a practical need 
to define, model and forecast volatility. There is a number of ways to define 
volatility, but it is a common practice to define volatility as the standard deviation 
of returns. Unlike asset prices, volatility cannot be observed directly so that it 
has to be estimated from historical data. To model and forecast volatility many 
possible models have been proposed and the literature on volatility models is very 
abundant. This article deals with univariate ARCH (Autoregressive Conditional 
Heteroskedasticity) model and its extension: the generalized ARCH (GARCH) 
model, both of which constitute only the starting point for more complex 
descriptions.

An application of volatility models to historical data of a polish company’s 
stock KGHM will be carried out with the aim to check the statistical properties of 
the time series and to see to how well the series might be described by the models 
presented. Based on the size and its history the polish stock market along with 
its component companies might still be regarded as emerging or regional. There 
are currently only 438 companies traded on the Warsaw Stock Exchange (WSE) 
whereas, for example, on the London Stock Exchange (LSE) 2477 companies 
were traded as of Nov 2012. Furthermore, by looking at the distributional 
properties of the stock return series and its  autocorrelation functions, one can 
measure the extent of market efficiency. Firstly, the return distribution should 
be approximately normal with typical for financial time series fat tails. Secondly, 
in a highly efficient market no serial autocorrelation in the stock returns should 
be present so that any serial autocorrelation of high order might be an argument 
against market efficiency1.

This article is structured as follows. Section 1 provides an overview of 
typical features of financial time series in order to give a glimpse of the kind of 
models needed to describe return series. In section 2 volatility definition is given. 
Section 3 presents ACH model structure and its methodology and thereafter an 
analysis of KGM stock returns using the framework presented earlier follows.

1 When investigating autocorrelations of returns, one should consider the aspect of data 
frequency as for some data frequencies autocorrelations of a certain order are typical which 
might not be true for other frequencies. For example, high-frequency data (intraday of shorter) 
will exhibit declining autocorrelation due to trading technicalities, but daily stock data should 
not exhibit any serial autocoreelation. For more details see the article of Andrew Lo mentioned 
in the references. For more details see the article of Andrew Lo mentioned in references.
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All charts and estimations were made with R software version 3.0.0. To 
confirm the results of statistical tests and model estimations, the same procedures 
were also performed in JMulTi and revealed none significant differences.

2. Characteristic Features of Financial Time Series
As shown by extensive empirical research, financial assets like bonds, stocks 

or foreign exchange rates, do exhibit certain similar features common to high-
frequency time series. Figure 1 below shows time plots of daily logarithmic 
returns of USD/GBP exchange rate, daily log returns of DAX index and of weekly 
log returns between USD and JPY. The log returns were calculated using the 
following formula: rt = 100ln (Pt/Pt − 1), where Pt is the price of an asset at time 
point t.

Figure 1. (a) Daily logarithmic returns of USD/GBP exchange rate. The span begins Apr 1, 1996 
and ends Apr 30, 2013 and includes 6239 observations. (b) DAX daily logarithmic returns 
from May 1, 1999 to Apr 30, 2013 with 3570 of observations. (c) USD/JPY weekly log 
returns starting at Jan 7, 1990 and ending on May 3, 2013 – 744 observations in total. In 
all three series trading days were used
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The series seem to be very similar to a realization of a white noise process2, i.e. 
the returns vary around a constant zero mean, however, the size of this variability 
changes over time. The latter feature is referred to as time-varying conditional 
volatility. Both series were more volatile in some periods than in other periods 
and periods of low (high) volatility tend to be followed by corresponding periods 
of low (high) volatility – a commonly encountered phenomenon in financial time 
series which is called volatility clustering or volatility persistence. These features 
give grounds for the assumption of serial correlation in the conditional volatility 
– the cornerstone assumption behind volatility models described in this article. 
Furthermore, a significant number of extreme observations (outliers) indicates 
that the return distribution might be non-normal. And the descriptive statistics 
(Table 1)3 confirm that the probability of extreme observations is higher than if 
the returns were normally distributed, i.e. the distribution is leptocurtic – this is 
the so called heavy-tails property. Consequently, an appropriate volatility model 
needs to possibly well capture at least some of the mentioned stylized facts.

Table 1. Data summary of the series used in the article

Data N Frequency Beginning Date End Date

USD/GBP 6239 daily 01/04/1996 04/30/2013

DAX 3569 daily 03/05/1999 04/30/2013

USD/JPY 1217 weekly 07/01/1990 04/28/2013

KGHM  744 weekly 05/02/1999 03/05/2013

Mean Standard Deviation Skewness Excess Kurtosis

USD/GBP -0.0003 0.4238 0.3227 6.0152

DAX 0.0108 1.5894 0.0247 4.0021

USD/JPY -0.0310 1.1578 -0.6970 4.3534

KGHM 0.4385 6.3853 -0.5363 5.9950

3. Volatility Definition
Firstly, the precise definition of the term volatility used in the article shall 

be given. The starting point is the variable’s continuously compounded return 
defined as a logarithmic difference of two adjacent observations. The subsequently 

2 A white noise process denotes a sequence of uncorrelated random variables with zero mean 
and constant variance. For details see, for example Hamilton (1994, p. 47).

3 Because normally distributed data has excess kurtosis equal 0, the sample excess kurtosis of 
2.26 of the series indicates that returns have more probability mass on the tail areas.
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estimated standard deviation of the return defines volatility usually denoted in 
the financial literature as s. There are other definitions of returns like geometric, 
harmonic, absolute etc. as well as there are other definitions of volatility like 
for example semi-variance. However, the definitions used in the article are the 
most typical in the literature. It is important to note that both the return and the 
standard deviation are values expressed per unit of time. For example, a series 
might have a return of 3.5% per year and volatility of 12.3% per year. However, 
in certain applications like options pricing or some VaR calculations other time 
units are needed so the values for standard deviation are recomputed using the 
following formula:

,
year day

v v C=

where syear, sday stand for the standard deviation on an annual and daily basis, 
respectively. And with T denoting the number of time points in the year, so if 
T = 252 the formula simply annualizes the daily standard deviation assuming 252 
trading days in a year4.

4. Univariate Conditional Heteroskedasticity Models
The widely used class of models designed to replicate the behavior of volatility 

was introduced by Engle (1982). His autoregressive conditional heteroskedasticity 
(ARCH) model and its extensions turned out to be very useful in studying the 
volatility of foreign exchange rates and others financial time-series.

 4.1. ARCH Model Specification

To describe a log return series {xt}, t = 1, 2, …, T with T observations 
a general model will be used:

 xt = mt + at, (1)

where mt denotes the conditional mean equation for xt and at is referred to as an 
innovation, a shock or as a mean corrected return. In practice, the conditional mean 
equation will be often well represented by an white noise or an autoregressive 
model of small order (Tsay, 2002, p. 111). The shocks are assumed to be a white 
noise so that they have the following properties:

4 For details see Hull (2012, p. 111).
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This means that the shocks oscillate around zero value5, have time-varying 
variance st and are serially uncorrelated. In the ARCH setting the {at} series is 
modeled as
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The term st denotes the conditional standard deviation of the process at 
a time t and {et} is a sequence of independent and identically distributed random 
variables with mean zero and variance one. In practice, {et} is often assumed to 
be standard normally or Student-t distributed6. The ARCH (1) model simply sets 
the conditional variance st on its lagged value from the most previous period so 
that the model becomes
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where a0 >0, a1 ³ 0 to ensure positiveness of the conditional variance and Ft–1 
denotes the information set at time t – 1. It is also necessary to set a0 + a1 < 1, 
otherwise the model produces exploded values. To work with these models time-
series need to satisfy the condition of stationarity. Put it simply, a stationary time-
series has a constant unconditional variance which means that even though its 
conditional variance changes in time the unconditional variance remains constant. 
The models described in these article are not able to capture the behavior of non-
stationary time-series. The equation above is called the volatility equation for 
xt. It shows that the conditional variance in the period t has two components: 
a constant and last period’s volatility.

To relate the conditional variance to more than only one lagged value of at an 
ARCH(m) model can be built:

.a a
t t t mm
2

0 1 1
2 2fv a a a= + ++ +
- -

Consequently, the conditional variance t
2v  is thereby dependent upon the 

past squared shocks up to m lags. Moreover, because the shocks are squared 

5 None of the series presented above have statistically significant mean values different than 
zero, see Table 1.

6 Because empirical distributions of financial data are often leptocurtic, a heavier-tailed t-distri-
bution might fit data better than the normal disribution (Franke, 2011, p. 225).
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both positive and negative values of the deviations have the same effect on the 
dependent variable – a feature that is rather inconsistent with empirical findings 
about volatility of financial data. In fact, volatility does not respond symmetrically 
to positive and negative returns; positive returns tend to produce smaller 
volatility than price drops7. This is an evident drawback of the model.

 4.2. Generalized Autoregressive Conditional Heteroskedasticity
  (GARCH) Model

The application of ARCH models can be cumbersome because one often 
needs many parameters to adequately describe the volatility process of an asset 
return (Tsay, 2002, p. 93). Particularly, in financial applications involving the use 
of daily or weekly data the conditional variance can depend on volatilities going 
back a large number of periods. Because precise estimation of large number of 
parameters poses difficulties, an extension of the ARCH(m) model known as 
the generalized ARCH (or GARCH) model was introduced by Bollerslev (1986). 
The idea was to let the conditional variance be a function not only of squared 
innovations but also of its own lagged values. The GARCH (1,1) has the following 
form:
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The model can be extended to GARCH(p,q)
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Unlike ARCH(m) models, GARCH models are very parsimonious so in 
practice it is sufficient to use only GARCH models of low orders, that is to set m 
and s to 1 or 2 lags maximally (Tsay, 2002, p. 134.).

 4.3. Testing for ARCH Effects and Model Selection

After fitting the mean equation to the series, squared residuals can be used 
to check for conditional heteroskedasticity (ARCH effects). Usually, two tests 
are performed: Ljung-Box statistics of squared residuals and the Lagrange 

7 Tsay (2002, p. 80). One of the most important models that addresses this issue is the exponen-
tial GARCH (EGARCH) model (Nelson, 1991) where innovations are weighted (for details see 
Tsay, 2002, p. 102–103).
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Multiplier test of Engle (1982), which is equivalent to F statistic for testing the 
joint hypothesis that all the regression parameters are zero (see Mills, 1999, 
p. 143 for details).

If ARCH effects are present, the a natural question is to how to determine 
the order of the model. In the case of ARCH (m) models the PACF of squared 
shocks at

2  might be used because at
2  is an unbiased estimate of t

2v  (Tsay, 2002, 
p. 119). When modeling financial data, it is recommended to fit models of different 
orders and then to choose the model that minimizes a given information criterion. 
In ARCH modeling the Akaike’s Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) are commonly used. The models with the smallest 
criterion value are chosen (for details see Brockwell, Davis, 2002, p. 355 and 
Mills (1999, p. 34–35).

 4.4. Estimation and Diagnostic Checking

The estimation of ARCH/GARCH models is normally done using the 
maximum likelihood method. In the first step, the likelihood function needs 
to be determined and thereafter the parameters maximizing the function are 
searched for. Here, it is assumed that at are conditionally normally distributed 
with zero mean and variance t

2v . However, it is often more appropriate to 
assume t-distributed error terms albeit the computation becomes more complex. 
In order to check for the adequacy of the volatility model the usual Ljung-Box 
statistic on the squared standarized shocks from the estimation can be used. 
If p-values of statistics of the squared standarized residuals are high, then the 
null hypothesis of no autocorrelation cannot be rejected, residuals are white 
noise and it is concluded that the model adequately describes observations (for 
details see for example Hamilton, p. 117 and Franke p. 295 (ARCH) and p. 306 
GARCH)).

5. Empricial Analysis of KGHM Returns
 5.1. Checking for Autocorrelations and Finding the Conditional Mean
  Equation

Figure 2 displays prices and weekly log returns of polish stock ticketed 
‘KGHM’. Whereas price series does show strong trend and evident nonstation-
arity so the series in this form cannot be analyzed in the framework described 
above, log returns exhibit usual features of financial time series, ire observa-
tions oscillate around a constant (zero) mean and conditional volatility occurs 
in clusters. Additionally, around February 2009 some extreme observations are 
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present8. To formally check if the log return series is indeed stationary the aug-
mented Dickey-Fuller (ADF) unit-root test is carried out9. The test statistic of 
–5.321 with p-value of 0.01 enables to reject the null hypothesis at 5% signifi-
cance level10.

Figure 2. (a) KGHM weekly prices (in PLN). (b) KGHM weekly log returns. The data for both 
series spans from February 5, 1999 to May 3, 2013 and both series contain 
744 observations. Datasource: www.stooq.pl
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In order to find the conditional mean equation according to (1) sample autocor-
relation and partial autocorrelation functions of log returns will be used11. Figure 3 
shows that the series is not serially correlated at statistically significant level12.

 8 Outliers might be seen either as a measurement error or as a part of a data genereting process 
and their presence might influence standard error estimates in an OLS regression. For details 
on kinds of outliers and how to handle them see Montgomery (2003, p. 61).

 9 A description of the test can be found in Tsay (2002, p. 77).
10 The null hypothesis is that a unit root is present in the autoregression against the alternative 

hypothesis of stationarity.
11 For definitions of SACF and PACF see for example Tsay (2002, p. 30). These functions are 

useful in determing the order of an autoregressive process.
12 Even though there seems to be a significant autocorraltion at lag 21, such a distinct lag has 

very a low weight and as further analysis will show the process might be well approximated 
by a white noise.
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Figure 3. Sample autocorrelation (a) and partial autocorrelation (b) functions of KGHM weekly log 
returns. The two dashed lines denote the two standard error limits
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Additionaly, the statstical tests of Ljung-Box and F-test13 confirm that there 
is none significant autocorrelations: the Ljung-Box statistic even for 21 degress 
of freedom is 29.2494 and its p-value is 0.1081 so that the null hypothesis of no 
autocorrelation cannot be rejected at standard significance levels.

As a result, the conditional mean equation will simply consist of a constant 
and an error term. Fitting an AR(0) model with non-zero mean14 gives a value 
for the constant coefficient 0.4385 with std. error 0.2341 (and approx. p-value of 
0.06143) so it might be concluded that the coefficient is statstically insignificant 
at 5% level and the return generating process as yet gets the following form:

, .x a 40 7717
t t t a

f v= =t

To check the model adequacy the Ljung-Box statistic for the residuals might 
be used. If the model is adequate the standarized residuals should be similar 

13 For the description of the tests see Tsay (2002, p. 114). More results can be found in the table 
in the appendix.

14 Other selection criteria like Akaike’s Information Criteria also point to an autoregressive 
model of zero order, see Tsay (2002).



115Grzegorz Kanoza, Volatility Modeling with GARCH Models...

to a white noise. The statistic for 12 lags is 12.1813 with p-value of 0.4312 so 
that the null hypothesis of no serial autocorrelation cannot be rejected at any 
reasonable level15.

 5.2. Testing for ARCH effects

Having fitted the mean equation it is necessary to test for heteroskadasticity 
(ARCH effects)16. The usual way is to begin with sample autocorrelation and 
partial autocorrelation functions of the squared log returns. Figure 4 shows 
conditional volatility (as squared returns) together with sample autocorrelation 
and sample partial autocorrelations functions of the same series. Significant 
autocorrelation are present in both in the SACF and SPACF. Specifically, spikes in 
the latter indicate the presence of conditional heteroskedasticity. Additionaly, the 
test statistic from the Ljung-Box test equals 234.4170 with p-value of 0.00 which 
allows to reject the null hypthesis of no serial correlation in squared observations 
– ARCH effect are present (i.e. conditional volatility depends on its past values).

Figure 4. Conditional volatility (a) sample autocorrelation (b) and partial autocorrelation 
functions (c) of KGHM squared logarithmic returns
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15 See the table in the appendix for more results.
16 Time-varying conditional variace distorts standard error estimates in a regression. Secondly, 

accounting for heteroskadasticity migh improve forecasts accuracy. See Engle (2001, p. 3–4).
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 5.3. Model Selection and Estimation

If ARCH effects have been confirmed, a model of the appropriate order needs 
to be selected. One way to initially determine the order of an ARCH model is 
to use the sample partial autocorraltion function of squared shocks (Tsay, 2002, 
p. 120). Figure 4 (b) shows that an ARCH model of order 3 might be appropriate. 
However, to get more precision it is recommended to fit models of different 
orders and then to choose the model that maximizes the log-likelihood function 
and/or minimizes a given information criterion. Table 2 presents a few models 
of different orders and its Akaike’s information criteria and it can be seen that 
GARCH (1,1) model is the model which minimizes the AIC, so this model is 
selected. Consequently, the model for the whole series takes the following 
form:

. . .a2 23064 0 10391 0 83749
t t t
2

1
2

1
2v v= + +

- -

Table 2. Estimation results of different ARCH models

ARCH(3,0) ARCH(2,0) GARCH(1,1)

parameter t-value parameter t-value parameter t-value

ARCH(1) 0.15435 6.26988 0.19513 6.96941 0.10268 7.56289

ARCH(2) 0.06736 2.09736 0.06516 2.11339 X X

ARCH(3) 0.08720 2.32984 X X X X

GARCH(1) x X X X 0.83971 31.49698

GARCH(2) x X X X X X

Intercept 26.57210 15.21691 28.83570 18.49637 2.19797 3.35148

Log-Likelihood -2384.99 -2392.79 -2370.95

AIC 6.4401 6.4477 6.3836

Source: own elaboration.

To check the model adequacy autocorrelation and partial autocorrelations of 
the residuals are investigated. As can be seen from Figure 5 showing standarized 
residuals and conditional volatility, the selected model quite accurately describes 
the data generating process.
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Figure 5. (a) Residuals from the model. (b) Estimated conditional volatilty for the kghm log 
returns
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Source: the estimation made by the author.

6. Conclusion
Based on abundant research as well as examples given in this article many 

financial time series exhibit certain common features. Usually, returns of 
different asset classes oscillate around a constant mean, but observations tend to 
be more volatile in some periods than in other periods. This phenomenon, called 
volatility clustering, suggests some nonlinear (conditional on past observations) 
dependence in observations and became the main motivation fot the introduction 
of ARCH (autoregressive conditional heteroskedasticity) models by R. Engle in 
1987. This model has proved to be very succesful and gave rise to many other, 
more complex models. This article describes only its widely used extension the 
generalised ARCH or GARCH model – a more parsimonious but very useful 
version, however these models often serve just as a building block for other 
versions.
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The author of the article tried to find out to what extent a polish stock 
KGHM exhibits typical features of financial time series and how well the series 
might be described by the ARCH modeling framework presented in the article.  
Because the polish stock market and its main components, of which KGHM is by 
far the biggest, would be still classified as emerging, it might be expected to see 
some discrepancies in the features of time series in comparison to more mature 
markets. As it is widely recognized that mature markets like for example the 
Geraman stock index DAX are fairly efficient, then such serious discrepancies 
might be interpreted as evidence against market efficiency.

What has been shown in the article is that weekly log returns of polish stock 
KGHM do exhibit typical features of financial time series, that is, the series 
varies around zero mean and exhibits volatility clusters. Additionally, descriptive 
statistics show that the return distribution is non-normal as the series displays 
slightly negative skewness and has significant excess kurtosis. As shown by tests 
and the sample autocorrelation as well as partial autocorrelation functions there 
is none significant serial autocorrelations in returns, however, this is not the 
case for squared observations which show significant autocorrelation up to lag 3. 
Obviously, it is evident that ARCH effects are present in the series. Subsequent 
analysis and model fitting revealed that the best model (as selected by the log-
likelihood and AIC) to fit the series, is the GARCH(1,1).

As a result, the analysis of the KGHM returns series given revealed no 
discrepancies with respect to features typical in other financial time series and 
because the series might be well described with the usual approach, there is lack 
of evidence of market inefficiency in comparison to mature markets.
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