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Abstract

Purpose — The primary purpose of this paper is to identify the so-called core authors and their publications
according to pre-defined criteria and thereby direct the users to the fastest and easiest way to get a picture of the
otherwise pervasive field of bankruptcy prediction models. The authors aim to present state-of-the-art
bankruptcy prediction models assembled by the field’s core authors and critically examine the approaches and
methods adopted.

Design/methodology/approach — The authors conducted a literature search in November 2022 through
scientific databases Scopus, ScienceDirect and the Web of Science, focussing on a publication period from 2010
to 2022. The database search query was formulated as “Bankruptcy Prediction” and “Model or Tool”. However,
the authors intentionally did not specify any model or tool to make the search non-discriminatory. The authors
reviewed over 7,300 articles.

Findings — This paper has addressed the research questions: (1) What are the most important publications of
the core authors in terms of the target country, size of the sample, sector of the economy and specialization in
SME? (2) What are the most used methods for deriving or adjusting models appearing in the articles of the core
authors? (3) To what extent do the core authors include accounting-based variables, non-financial or
macroeconomic indicators, in their prediction models? Despite the advantages of new-age methods, based on
the information in the articles analyzed, it can be deduced that conventional methods will continue to be
beneficial, mainly due to the higher degree of ease of use and the transferability of the derived model.
Research limitations/implications — The authors identify several gaps in the literature which this research
does not address but could be the focus of future research.

Practical implications — The authors provide practitioners and academics with an extract from a wide range
of studies, available in scientific databases, on bankruptcy prediction models or tools, resulting in a large
number of records being reviewed. This research will interest shareholders, corporations, and financial
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institutions interested in models of financial distress prediction or bankruptcy prediction to help identify
troubled firms in the early stages of distress.

Social implications — Bankruptcy is a major concern for society in general, especially in today’s economic
environment. Therefore, being able to predict possible business failure at an early stage will give an
organization time to address the issue and maybe avoid bankruptcy.

Originality/value — To the authors’ knowledge, this is the first paper to identify the core authors in the
bankruptcy prediction model and methods field. The primary value of the study is the current overview and
analysis of the theoretical and practical development of knowledge in this field in the form of the construction of
new models using classical or new-age methods. Also, the paper adds value by critically examining existing
models and their modifications, including a discussion of the benefits of non-accounting variables usage.

Keywords Review, Business failure, Machine learning, Bankruptcy prediction models, Core authors
Paper type Research paper

Introduction

Since the creation of the first bankruptcy prediction models in the 1960s, scholars have
developed numerous different models worldwide. Shareholders, corporations and financial
institutions are interested in models of financial distress prediction or bankruptcy prediction
to help identify troubled firms in the early stages of distress (Sun ef al, 2014a, b). The
literature in this area has grown significantly and the global financial crisis made it grow
even more. Historically, scholars employed various methods to devise bankruptcy prediction
models. Karas and Rezndkova (2017) argue that we must pay attention to the method choice,
because it predetermines the method’s discrimination ability to a large extent. However, the
models differ in the methods used and the type of explanatory variables. Moreover, each
model emerged in the specific condition of the individual country or is dedicated to a
particular branch. Furthermore, the sample of companies usually consisted of companies
from various economic categories. When choosing an appropriate model, all of these criteria
require consideration.

We found several studies that provided an overview of bankruptcy models, their methods
and predictors, including the frequency of their use in the literature, and discussed their
advantages and disadvantages (Adnan Aziz & Dar, 2006; Alaka et al,, 2018; du Jardin, 2018;
Kovacova et al, 2019a, b). Alaka et al. (2018) prepared a framework for model selection and
systematically reviewed 49 journal articles published between 2010 and 2015. Based on 13
key criteria, their research showed how eight popular methods perform: accuracy, result
transparency, fully deterministic output, data size capability, data dispersion, variable
selection method required and variable types applicable. However, the research did not
mention the review’s limitations nor did it reflect on acknowledged and area-dedicated
authors.

We could not find any review in ScienceDirect, Web of Science, or Scopus that identified
the field’s core authors. What are their methods and other study features, i.e. which articles
should we study if the focus is only on the core fields? The above reasons led us to provide
practitioners and academics with an extract from a wide range of studies from the scientific
databases on bankruptcy prediction models or tools, resulting in a large number of reviewed
records (over 7300).

Given the current economic situation, the focus of this research is highly topical. Many
companies seek to review and assess their business to predict future development, often
considering whether to stay in business or not. Although most previous studies prefer
endogenous to exogenous causes (Jones, 2017), some authors ask which approaches to
bankruptcy prediction to use and also consider non-financial variables and macroeconomic
variables.

We aimed to identify the so-called core authors and their publications according to pre-
defined criteria and thereby direct the users to the fastest and easiest way to get a picture of



the otherwise pervasive field of bankruptcy prediction models. We focused on core authors to
find the most recognized and dedicated authors in the area of bankruptcy prediction.
Although some studies connect a core status only to the citation status, scientometric studies
suggest another approach combining various criteria (Gu, Li, Li, & Liang, 2017; Ouyang et al,
2018; Wang, Wang, & Yang, 2017). Hence, we adopted a combination of impact reflection
techniques, wherein the minimum required number of articles in the research accompanied
citations and dedication to the research.

We analyzed the core authors’ publications with emphasis on the target country, the
sample structure, the type of explanatory variables, the methods applied and other
characteristics. We aimed to answer the following research questions:

RQ1. What are the most important publications of the core authors in terms of the target
country, the sample size, the economy’s sector and SME specialization?

RQ2. What are the most used methods for deriving or adjusting models appearing in the
articles of the core authors?

RQ3. To what extent do the core authors include accounting-based variables, non-
financial or macroeconomic indicators, in their prediction models?

Following the introduction, the article will focus on the research methodology, including the
search strategy, eligibility criteria and methods classification. The next sections will present
the results and discussion, and, finally, the conclusion and future research recommendations.

Research methodology

Search strategy

We conducted a literature search in November 2022 through scientific databases Scopus,
ScienceDirect and the Web of Science. Our database search query was “Bankruptcy
Prediction” and “Model or Tool.” We intentionally did not specify any model or tool to make
the search non-discriminatory. We performed the Web of Science search with the search tag
ALL and ScienceDirect and the Scopus search with the title, abstract and keywords options.
Because we focused on the core but recent authors in the business research area, we set the
search criteria as follows:

(1) Publication timespan: 2010 to 2022;
(2) Document type: journal article;
(3) Research or subject area: business;
(4) Written in English.
Eligibility criteria
A team of six researchers assessed the articles to determine whether they met eligibility
criteria. In addition to the above search/eligibility criteria, the researchers excluded articles:
(1) Focused on company credit scoring;
(2) Focused on personal bankruptcy prediction;
(3) Focused on an accounting perspective;
(4) Focused on a macroeconomics and government policy perspective;

(5) Written by anyone other than a core author.
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The last eligibility criterion required us to analyse who are core authors. We should not
mistake them for the primary authors (first- or second-listed author) or corresponding
authors. The designation “core” stands for the relation to the field of study. Initially, Wang,
Qiu, & Yu (2012) claimed that there was no report on any standard for identifying core
authors in a scientific field, but in a later scientometric article (Wang et al,, 2017), they adopted
criteria of inclusion of authors who published five or more papers and received ten or more
citations. We find a similar approach of citing and authorship analysis in other scientometric
studies, for example, literature co-citation and the innovation path analysis of a research field
(Guetal,2017), number of articles and network density analysis (Castro & Parreiras, 2018), or
co-authorship frequency (Ouyang et al., 2018). Therefore, we adopted criteria based on a
dedication to the field of study and audience response, as cited by Wang et al. (2017). We
applied the criteria after the screening phase and content eligibility criteria analysis. For this
article’s purpose, a core author published five or more articles in our screened and eligibility-
criteria-reduced sample and achieved ten or more citations from articles included in our
filtered sample.

The final part of the analysis focused on the most impactful articles on the reviewed topic
so as not to miss any highly relevant articles and verify if the core authors were among those
most impactful ones. We found that some authors significantly overlapped with the computer
science research area. Therefore, we employed the field-weighted citation impact (FWCI)
indicator to normalize citations to see which articles and authors received more citations than
typical in the given field in a given year. Field-weighted citation impact is based on a
normalization suggested by Lundberg (2007) and elaborated in greater detail by Waltman,
van Eck, van Leeuwen, Visser, and van Raan (2011). We assessed the FWCI indicator for
articles that met all eligibility criteria except criterion “e” regarding core authors. We found 70
articles to be adequate. We then acquired these articles and studied them following a
pragmatic research approach (Lefley, 2006) (Figure 1).

Methods classification

The bankruptcy model creation process employs various methods as a stand-alone method,
combined in an ensemble model and also when modified for an application of machine
learning. It has different tasks, but the most important is the modelling technique. Other roles,
such as optimizing method, a genetic algorithm in machine learning, pre-analysis sample
preparation and mixed sample approach, also play their part. However, we focused solely on
the techniques that constitute the model’s basis. We may find two main groups among the
bankruptcy prediction models:

(1) Conventional statistical methods:

« Cluster analysis: it assesses if we may meaningfully summarize a data set in terms
of a relatively small number of clusters (groups) of objects or individuals that
resemble each other and are different in some respects from individuals in other
clusters (In Everitt, 2011). The classification is successful if the objects within
clusters are close together when plotted geometrically and different clusters are
far apart (Meloun & Militky, 2012). Moreover, we may employ it to segment cases,
such as companies (Lukason & Laitinen, 2019) or explanatory variables, e.g.
primary groups of financial indicators (Kovacova et al, 2019a, b).

« Multiple discriminant analysis: it aims to understand group differences and
predict the likelihood that an entity (individual or object) will belong to a
particular class or group based on several metric-independent variables (Hair,
2014). Multiple discriminant analysis and logit analysis are the most common
statistical models for bankruptcy prediction, (see, e.g. Altman, 2018).
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Flowchart

« Logistic regression: often referred to as logit models, combines multiple
regression, in which one or more independent variables serve to predict a
single dependent variable, and multiple discriminant analysis, in which a
dependent variable is nonmetric (In Hair, 2014). It is one of the most frequent
methods employed to classify/separate companies for which bankruptcy is likely
from those for which it is not (Kovacova et al., 2018).

« Decision tree: used in classification, it detects criteria for dividing the individuals
of a population into n predetermined classes. Criteria are variables that provide
the best separation of the individuals in a class, containing the largest possible
proportion of individuals (Tufféry & Tufféry, 2011). The result is a network of
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questions that forms a treelike structure with the ends of the tree as “leaf” nodes
(Nisbet, 2017). Financial ratios are the most common criteria/variables (Korol,
2013).

Fuzzy logic: a method for reasoning with logical expressions describing
membership in fuzzy sets. Rather than considering uncertainty about the truth
of well-defined propositions, fuzzy logic handles vagueness — its propositions
have a degree of truth between 0 and 1 (Russell & Norvig, 2021). This way, fuzzy
logic treats problems that arise from bivalent logic. Fuzzy logic does not replace
other conventional or machine-learning statistical methods. It rather adds rules
induction applicable in decision systems or processes combined with other
statistical methods (Nisbet, 2017). See Korol (2018) for fuzzy logic applied to
financial ratios.

(2) Machine learning methods:

Neural network: an algorithm inspired by neurons (units) and their synapses
(weights). Each input variable corresponds to a unit at a first level, called the input
layer. On the opposite side stands a final level called the output layer. Units
belonging to an intermediate level are the hidden layer or layers (Tufféry & Tufféry,
2011). The learning occurs in the hidden layer(s). It expresses a nonlinear function
by assigning weights to the input variables to produce an output value (Nisbet,
2017). A neural network can handle a high amount of input variables, both
traditional; financial and non-traditional, structure and ownership (Jones, 2017).

Decision tree: the classification task remains the same as in the case of the
conventional decision tree. However, it differs in learning. Contrary to a neural
network, during learning, the decision tree method conveys effects by developing
methods to find rules that allow the evaluation of input values for categorizing
them into distinct groups, without directly expressing the functional relationship
(Nisbet, 2017). There are various algorithms applied to decision trees (Sun et al.,
2018). Although it is a conventional statistical method, it frequently serves as a
base classifier in a machine-learning combination of models (du Jardin, 2021).

Support vector machine: the method is based on a concept of decision planes that
define decision boundaries. In their simplest form, such boundaries resemble a
separating line which ideally separates objects with different class memberships
(Nisbet, 2017). Therefore, some authors call the lines margin separators (Russell &
Norvig, 2021). Separation can use the main function types: linear, polynomial and
sigmoid. Liand Sun (2011d) give examples of various support vector machine models.

K-nearest neighbour: this method classifies each individual by searching among
previously classified individuals for the class of the k individuals, which are its
nearest neighbours, in terms of Euclidean distance or other distance metrics
(Tufféry & Tufféry, 2011). Scholars will choose the k value so as to obtain the best
possible classification. Regarding the output, after an algorithm finds the set of
neighbours, it takes the most common output value (Russell & Norvig, 2021). A
study by Li and Sun (2010) shows an influence of different k values. The methods
are applicable in both conventional and machine learning models.

Results and discussion
Based on the above methodological procedure, we selected 70 journal articles with full texts
available through open-source and premium access. We present the list of articles in the



Table Al. We listed the articles according to the core author criteria, FWCI, target region, the
article’s aim, survey period and sample size. Concerning our research questions and the
overall goal of the article, Tables 1-5 contain the key summary findings obtained based on
the analysis of the 70 articles.

From Table 1, we may observe that in the monitored period, core authors focused
primarily on the European region (including various groupings from independent states to
more expansive areas), followed by the region comprising China and Taiwan. Core authors
gave little or no specific attention to Africa, South America, or Southeast Asia. It appears that
many authors frequently focus on their home region (10 out of 15 of the core authors identified
by this current research are active in Europe). Altman, Iwanicz-Drozdowska, Laitinen and
Suvas (2017) tested the hypothesis about the influence of country-specific differences
(economic environment, legislation, culture, financial markets and accounting practices) on
the accuracy of the model.

Considering the research sample’s size (right side of Table 1) that founds the models for
determining a company’s bankruptcy, the category “0-999 companies” was the most
represented. This usually corresponds to the derivation of a model for the national economy
(Jabeur, Gharib, Mefteh-Wali, & Arfi, 2021). The largest samples are typically involved in
international comparisons (Altman ef «l, 2017). Based on public or private databases to
obtain data due to mandatory reporting of data to local authorities [in Slovakia — the Register
of Financial Statements (Kovacova & Kliestik, 2017), in V4 countries (Czech Republic,
Slovakia, Poland and Hungary) — the Amadeus database (Karas & Reznakova, 2017; Kliestik,
Vrbka, & Rowland, 2018), in France — the Orbis database (Jabeur, Gharib, Mefteh-Wali, &
Arfi, 2021), or the Bureau van Dijk Amadeus database for various European countries
(Lukason & Laitinen, 2019)].

Region Number of companies in the analyzed dataset
Top article, Top article,
Number of according to Number of according to
Category studies % the FWCI Category studies %  the FWCI
\Z% 16 23 Kliestik et al. 0-999 30 44 Jabeur ef al
(2017) (2021)
EU? 19 27 Jabeur et al. 1000~ 14 21  Jones et al
(2021) 9999 (2017)
Europe® 2 3 Korol (2018) 10,000— 16 23 Kliestik et al
999,999 (2017)
Other country 7 10 Altman et al 1M and 4 6  Altman ef al.
groupings® (2017) more (2017)
Not assigned to 4 6 Altman (2018)  No real 4 6 Sunetal
a specific data/NA (2014a, b)
region
China/Taiwan 15 21 Liang et al. _ - - -
(2016)
North America 6 85 Barboza et al _ - - -
(2017)
Australia 1 15 Peatand Jones _ - - -
(2012)
Total 70 100 Total 68" 100

Note(s): 'Visegrad countries (V4) together or separate; 2EU as a whole and other EU countries without V4;
European countries meaning EU countries and other non-EU countries together; “two articles deal with the

comparison of already created models

Source(s): Own elaboration
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Table 2.

Articles by sector and
size of the company in

Sector Size of the company in the dataset
The top The top
article, article,
Number according to Number according to
Category of studies % the FWCI Category'  of studies % the FWCI
Agriculture 2 3 Karas et al. Small and 9 13 Altman et al.
(2017) medium- (2020)
sized
Manufacturing 5 7 Lukason and  Large 1 15 Jones and
Laitinen Wang (2019)
(2019)
Construction 3 45 Karas and Medium 1 15 Munoz-
Reznakova and large Izquierdo
(2017) et al. (2020)
Accommodation 1 15 Liand Sun All or N/A 59 84 Kliestik et al.
and food service (2011) (2017)
activities
Two and more 10 14 Kliestik ef al. - - -
sectors together (2018)
N/A 49 70 Kliestik ef al. - - - -
(2017)
Total 70 100 Total 70 100

Note(s): 'the categorization of businesses by size is based on the methodology of individual articles

the data set Source(s): Own elaboration
Category Number of studies % Top articles according to the FWCI
New model 48 69  Kliestik et al. (2017)
Existing model in a new environment! 6 9  Sunetal (2014)
Existing model with modifications 6 9  Altman ef al (2017)
Others? 10 14 Kliestik et al. (2020)
Total 70 100
Note(s): transferability of the model; 2comparison of the models; predictors’ analysis without model
Table 3. construction
Outputs of the articles Source(s): Own elaboration
Number of Top article according to the
Category Method studies %  FWCI
Conventional method  Cluster analysis 8 11 Kliestik ef al. (2020)
Discriminant analysis 35 50 Kovacova and Kliestik
(2017)
Regression analysis (Logit, 4 63  Valaskova et al (2018)
Probit)
Decision tree 12 17 duJardin (2016)
Machine learning Artificial neural network 16 23 Jones et al (2017)
method Support vector machines 23 33 Barboza et al (2017)
Table 4. Decision tree 9 13 Carmona et al. (2019)
Methods employed in K-nearest neighbour 5 7 Liand Sun (2009)

selected articles

Source(s): Own elaboration




Table 2 shows that only a minority of the included studies deal with a specific economic
sector, either independently (16%) or within the framework of an inter-industry comparison
(14%). The vast majority of articles (70%) do not consider the different conditions in the
industry as essential. If the authors derive a model for a specific region, they work with all
enterprises in the given region as a whole or do not provide more detailed information about
the sample. We may similarly interpret the right side of Table 2, which focuses on the size of
the enterprises in the research sample. Noteworthy, 13% of the considered studies addressed
the SME environment. However, the vast majority of publications do not comment
specifically on the companies’ size in the research sample they work with.

Table 3illustrates that among the monitored articles from the core authors, 69% focused
on developing new models. The top-rated articles, as determined by FWCI, include Kliestik,
Misankova, Valaskova, and Svabova (2017), Valaskova et al. (2018) and Jabeur ef al. (2021).
In the field of bankruptcy prediction models, the academic community also debates whether
the models are transferable, i.e. whether they are applicable in any environment other than
where they emerged (Sun et al., 2014a, b). Gavurova, Packova, Misankova, and Smrcka
(2017) validated four models (Altman model, Ohlson model, and indices INO5 and INO1) for
the Slovak business environment, and Karas et al (2017) analysed the accuracy of four
traditional models in the field of agriculture. Many authors (Gavurova et al.,, 2017; Karas,
Rezndkova, & Pokorny, 2017; Rezndakova & Karas, 2015) conclude that the prediction
accuracy of bankruptcy models falls when applied to a different branch, period, or
economic environment and that such models need validation in the other conditions. When
authors changed the original model (whether it was an adjustment of weights, variables, or
boundary bands), we included the given article in the category “existing model with
modifications.”

Altman et al. (2017) offer a comprehensive international analysis by investigating the
performance of the z-score model for firms from 31 European and three non-European
countries using different modifications of the original model. Altman et al (2017) conclude
that the general z-score model works reasonably well for most countries (the prediction
accuracy was approximately 0.75), and using country-specific estimation that
incorporates additional variables can further improve classification accuracy
(above 0.90).

In total, 14% of publications deal with the predictors’ analysis (Karas & Rezidkova, 2017,
Kliestik, Valaskova, Lazaroiu, Kovacova, & Vrbka, 2020), methods’ comparison (Barboza,
Kimura, & Altman, 2017), comparison of existing models (Kovacova et al, 2019a, b), or
comparison of models’ performance or efficiency (Altman, Iwanicz-Drozdowska, Laitinen, &
Suvas, 2020; Liang, Lu, Tsai, & Shih, 2016).

Category Number of studies % Top article, according to the FWCI
Financial ratios! 70 100 Kliestik ef al (2017)

Nonfinancial indicators® 10 14 Liang et al (2016)

Macroeconomic indicators

GDP/GDP per capita 5 7 Jones (2017)

Inflation rate 2 3 Jones (2017)

Unemployment 2 3 Jones (2017)

Others 2 3 Jones (2017)

Note(s): ‘accounting-based variables and market-based variables; %corporate governance indicators, other
industry and firm-specific indicators
Source(s): Own elaboration
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Logit and discriminant analysis are the most often used methods (Table 4), not just as a
method by itself but as a benchmark to which scholars compare other predictive tools’
performance rates. A very wide range of authors used these two methods. The decision tree
method is specific, because it serves as a conventional method providing results on its own or
as a first-stage method in machine learning. The second-stage method is usually an artificial
neural network that uses variables preselected through the decision tree or trees. By trees, we
mean a group/ensemble of trees (tree boosting) to mitigate the disadvantages of a single
decision tree. A similar case is the k-nearest neighbour method which, scholars can employ
conventionally or as a part of the learning process. Among the machine learning methods, the
one most common in the sample was the support vector machines, which we found mainly in
articles by four authors collective around Du Jardin, Tsai, Li and Sun.

Since the 1960s, bankruptcy prediction models designed have been primarily based on
financial ratios, for example, accounting-based variables (Altman, 1968; Kliestik ef al, 2017;
Ohlson, 1980; Zmijewski, 1984). Some authors (Jones, 2017) argue that accounting-based variables
report past business performance and recommend using market-based variables (see also Atiya,
2001; Beaver, 1966). The current research also shows that financial ratios are the primary
predictors of bankruptcy in all monitored articles (Table 5). Accounting-based variables derive
from firm income statements and balance sheets; these data are readily available, offer good
discrimination ability (Altman, 1968) and are well standardized. The market-based variables are,
for example, market capitalization, market-to-book, or price volatility (Jones, 2017). du Jardin,
Veganzones and Séverin (2019) indicate that accounting-based variables can be “manipulated.”
However, their article suggests a way to overcome the deteriorated model performance resulting
from firms manipulating the figures of their annual accounts.

In recent years, researchers have addressed the importance of non-financial variables
(Jones, 2017; Liang et al, 2016). In most cases, they did it in conjunction with accounting-based
variables. In the current research, we used non-financial indicators in 14% of cases. As non-
financial indicators, we considered governance indicators (Jones, 2017) and other industry
and firm-specific indicators (Doumpos, Andriosopoulos, Galariotis, Makridou, & Zopounidis,
2017; Jones, Johnstone, & Wilson, 2017), which may provide additional power in bankruptcy
prediction. According to Shailer (2004), corporate governance includes the mechanisms,
processes and relations that control and direct corporations.

Tsai et al. (2021) classify corporate governance indicators into five categories: board
structure, ownership structure, cash flow rights, the key person retained and others. Their
research aimed to assess the prediction performance obtained by combining seven different
categories of financial ratios and five different categories of corporate governance indicators.
Our results show that financial ratios of solvency and profitability and the corporate
governance indicators of board structure and ownership structure are the most important
features in bankruptcy prediction.

We may consider macroeconomic factors (GDP per capita, GDP growth, the CPI index,
interest rate levels, and public debt to GDP) as non-financial indicators as well, but in the
current research, we monitored such factors separately. Among the monitored studies, few
articles use macroeconomic indicators. In the case of the use of GDP-based indicators, there are
five studies, and in the case of other macroeconomic indicators, only two studies. According to
FWCI, the best-rated article using macroeconomic indicators is the one by Jones (2017), in which
he uses the gradient boosting model, which accommodates very large numbers of predictors.
Based on their overall predictive power, we can rank-order these predictors from best to worst.
Among other indicators, Jones also includes exogenous variables, i.e. real GDP and real GDP
growth, CPI index, unemployment rate and others. However, his research concludes that
macroeconomic variables are the weakest predictors, together with variables such as analyst
recommendations/forecasts and industry-specific variables.



Conclusions and future research recommendations
This article addressed three research questions:

RQ1. What are the most important publications of the core authors in terms of the target
country, the sample size, the economy’s sector and SME specialization?

We present our findings based on the 70 articles itemized in the Appendix, showing the core
author criteria, FWCI, target region, the article’s aim, survey period and sample size. We
support it with the data presented in Tables 1-3. We presented the core authors’ most
important publications in bankruptcy prediction models.

RQ2. What are the most used methods for deriving or adjusting models appearing in the
articles of the core authors?

Conventional methods are the most used compared to the less used machine learning
methods. Despite the advantages that new age methods offer, based on the information in the
analyzed articles, we deduce that conventional methods will continue to be beneficial, mainly
due to the higher degree of ease of use and the transferability of the derived model.

RQ3. To what extent do the core authors include accounting-based variables, non-
financial or macroeconomic indicators, in their prediction models?

While all of our core authors indicated the usage of “financial ratios” and, to a lesser extent
“non-financial indicators” and “macroeconomic indicators,” we were able to show the
growing importance of corporate governance and other industry and firm-specific indicators.

This study primarily contributes by providing a contemporary overview and analysis of
the theoretical and practical advancements in the field. It achieves this by constructing new
models through classical or new-age (machine learning) methods, as well as by evaluating
existing models and their adaptations. It also engages in a discussion regarding the
advantages of incorporating non-accounting variables. Furthermore, it identifies the core/
lead authors who systematically dealt with bankruptcy models in the given period and thus
developed the given field. To the best of our knowledge, this is the first study to focus on the
systematic work of lead, respectively, core authors with required citation responses. This
study further connects the outputs of the core authors with the value of the bibliographic
indicator FWCI. It thus provides an overview of the attractiveness of these outputs, actually
the attractiveness of the approaches of the core authors. Therefore, in this study, we devoted
considerable attention to methods for model derivation.

Concluding, our research shows that current core authors work with bankruptcy models
from various, often very complex, perspectives regarding work with the research sample,
either from the point of view of its structure or the environment of research sample’s location.
Moreover, conventional and new-age methods are frequently used in a modifying capacity.
Despite the advantages that new age methods offer, based on the information in the articles
analyzed, we may deduce that conventional methods will continue to be beneficial, mainly
due to the higher degree of ease of use and the transferability of the derived model.
Nevertheless, the accuracy of models decreases when they are used differently in time
and space.

We identified several gaps left to be answered by future research.

First, regarding the methods, machine learning methods can be transferable, although the
process is more complex than, for example, logistic regression. No author who employed the
machine learning method provided means for doing so. Verification, application of their
models on other data, or simply reproducing the results is impossible. Therefore, it would be
helpful — not only for the field of bankruptcy models — to agree on a reporting method and its
means. This task is similar to the widely-used PRISMA methodology for systematic reviews.
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Thus, future research should focus on the transferability of machine learning model results,
which includes the identification of the model framework and the hyperparameter file. This
would be equivalent to conventional methods with model procedures (like logit or MDA) and
equation variables (constant and explanatory variable values). In the best-case scenario, the
results would be uploaded to a service such as Kaggle or Google Colab, so that the model can
run without the help of an expert IT.

Second, regarding the characteristics of the samples involved in deriving the models,
researchers focus on Europe, the USA and China from a regional perspective. We did not
identify a systematic approach to other economies, especially developing ones, including
traditional and “new age” methods. Similarly, the majority of studies disregard the
differentiation of input data required for formulating models, specifically concerning the
scale of enterprises and the economic sector in which these enterprises are active.

Third, in terms of both theoretical and practical aspects, conducting a study that compares
the model’s accuracy at the macroeconomic level with its accuracy in various specific
economic sub-sectors would be beneficial. In our research sample, we inadequately address
the matter of incorporating national characteristics, represented by non-accounting
indicators, when the model encompasses a broader array of diverse economies. In this
area, in further research, it is possible to build on Altman et al (2017), who propose the
inclusion of a variable expressing national specifics in the construction of the model. This
field would benefit from a broader discussion of appropriate variables defining these national
specificities.
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